首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin injection across the ferrimagnetic insulator (YIG)/normal metal (Au) interface was studied by ferromagnetic resonance. The spin mixing conductance was determined by comparing the Gilbert damping in bare YIG films with those covered by a Au/Fe/Au structure. The Fe layer in Au/Fe/Au acted as a spin sink as displayed by an increased Gilbert damping parameter α compared to that in the bare YIG. In particular, for the 9.0 nm YIG/2.0 nm Au/4.3 nm Fe/6.1 nm Au structure, the YIG and Fe films were coupled by an interlayer exchange coupling, and the exchange coupled YIG exhibited an increased Gilbert damping compared to the bare YIG. This relationship between static and dynamic coupling provides direct evidence for spin pumping. The transfer of spin momentum across the YIG interface is surprisingly efficient with the spin mixing conductance g(↑↓) ? 1.2 × 10(14) cm(-2).  相似文献   

2.
Electrical characterization of 10 mol% gadolinia doped ceria (CGO10) films of different thicknesses prepared on MgO(100) substrates by pulsed laser deposition is presented. Dense, polycrystalline and textured films characterized by fine grains (grain sizes < 18 nm and < 64 nm for a 20-nm and a 435-nm film, respectively) are obtained in the deposition process. Grain growth is observed under thermal cycling between 300 and 800°C, as indicated by X-ray-based grain-size analysis. However, the conductivity is insensitive to this microstructural evolution but is found to be dependent on the sample thickness. The conductivity of the nanocrystalline films is lower (7.0×10?4  S/cm for the 20-nm film and 3.6×10?3  S/cm for the 435-nm film, both at 500°C) than that of microcrystalline, bulk samples ( $6\times 10^{-3}$  S/cm at 500°C). The activation energy for the conduction is found to be 0.83 eV for the bulk material, while values of 1.06 and 0.80 eV are obtained for the 20-nm film and the 435-nm film, respectively. The study shows that the ionic conductivity prevails in a broad range of oxygen partial pressures, for example down to about 10 ?26  atm at 500°C.  相似文献   

3.
Control of spin waves in a ferrite thin film via interfacial spin scattering was demonstrated. The experiments used a 4.6 μm-thick yttrium iron garnet (YIG) film strip with a 20-nm thick Pt capping layer. A dc current pulse was applied to the Pt layer and produced a spin current across the Pt thickness. As the spin current scatters off the YIG surface, it can either amplify or attenuate spin-wave pulses that travel in the YIG strip, depending on the current or field configuration. The spin scattering also affects the saturation behavior of high-power spin waves.  相似文献   

4.
《Solid State Ionics》2006,177(19-25):1985-1989
The application of the electrophoretic deposition (EPD) technique to the preparation of high quality electrolyte films for intermediate temperature solid oxide fuel cells (IT-SOFCs) was investigated. Films of La0.83Sr0.17Ga0.83Mg0.17O2.83 (LSGM) were deposited on Pt and La0.8Sr0.2MnO3 (LSM) substrates from suspensions in acetone/ethanol (3:1 by volume) mixture solvent and sintered at 1300 °C. Pt supported LSGM films, 10–20 μm thick, exhibited good adhesion to the Pt substrate, well-distributed microporosity and some surface roughness. LSM supported films exhibited cracking after sintering at 1300 °C for 3 h. Up to 900 °C the bulk conductivity of the Pt supported LSGM film showed the same behaviour of LSGM pellet (Ea = 0.93 eV and 0.99 eV, respectively). The LSGM film exhibited lower bulk electrical conductivity than the latter (4.1 × 10− 3 and 4.4 × 10− 2 Ω− 1 cm− 1, respectively, at 700 °C). This difference should be ascribed to the slight Ga depletion in the LSGM film. An important issue remains the selection of adequate electrode for LSGM electrolyte films.  相似文献   

5.
ABSTRACT

We have used polarized neutron reflectivity, X-ray diffraction, X-ray reflectivity and magneto-optical Kerr effect in polar configuration to study the properties of ultrathin Pt/Co/Pt films. Structures consisting of a 5-nm thick Pt buffer, 3-nm thick Co layer and 5-nm thick Pt cover layer were deposited onto (0001)-oriented Al2O3 substrate by the molecular beam epitaxy (MBE) method. Irreversible modifications of film properties, resulting from its illumination by single femtosecond laser pulses, of duration of 40 fs and wavelength of 800 nm, were observed and analyzed. As prepared films exhibited magnetization in-plane, but after laser irradiation, the direction of magnetization was rotated to out-of-plane state. Formation of Co–Pt alloy phase caused by quasi-uniform film irradiation was demonstrated by the results of X-ray and neutron scattering measurements. Moreover, polarized neutron and X-ray reflectivity data showed that after illumination Co was distributed mostly in the area of nominal Co layer and Pt cover layer and its diffusion into the Pt buffer was less significant.  相似文献   

6.
The temperature dependence of the saturation magnetization of a series of ionimplanted YIG films is presented. The films were implanted with neon ions at an energy of 450 keV; the dose ranged from 2 to 5*1014 ions/cm2. The experimental data can be described by the molecular field theory showing that the ion-implanted part of the film can be approximated as consisting of two regions each having their own magnetization and Curie temperature. The values of these magnetic parameters vary as a function of dose and differ strongly from the values for pure YIG.  相似文献   

7.
We report on a CEMS investigation of the surface layer obtained in pure YIG film after an annealing of 20 h in H2 at 480°C. We show that the surface layer has a garnet structure with the hyperfine fields coinciding with those of pure YIG. The magnetization in the surface layer is found to be parallel to that of the underlying film bulk. Furthermore we analyze the line widths of the Mössbauer peaks pertaining to such surface layer and compare the results with those obtained for a YIG film implanted with two different doses of Ne+, namely 7x1013 Ne+ cm-2 at 50 keV and 2.7x1014 Ne+ cm-2 at 50 keV. From this comparison it results that the peaks for the annealed film do not show any broadening while those for the implanted film are broadened. This clearly indicates that, within the experimental error, there is no damage in the surface layer obtained by annealing in H2 and, in any case, the damage is much lower than found in the surface layers of YIG films implanted with doses of practical interest.  相似文献   

8.
The time-resolved magnetic response of ultrathin epitaxial Fe(001) films grown on GaAs(001) and covered by Au, Pd, and Cr capping layers was investigated by time and spatially resolved Kerr effect measurements. The magnetization was excited by an in-plane magnetic field pulse using the transient internal field generated at a Schottky barrier while the wavelength of the excitation (resonant mode) was roughly 4 microm. Each of the three cap layers affected the spin relaxation in a unique way. Au cap layers resulted in the bulk Gilbert damping of the Fe film. Pd cap layers caused an additional Gilbert damping due to spin-pump or spin-sink effects. Cr cap layers lead to a strong extrinsic damping which can be described by two-magnon scattering. In this case the strength of the extrinsic damping can be controlled by a field induced shift of the spin wave manifold with respect to the excited k vector.  相似文献   

9.
Al/ZnO: Al heterojunction was fabricated by depositing ZnO: Al film on Al substrate by spray pyrolysis technique at 220 °C substrate temperature. XRD, SEM and EDAX techniques were used to study the properties of thin films. Heterojunction properties were studied by IV and CV measurements. The fabricated Al/ZnO: Al junctions were rectifying in character. The room temperature ideality factors of Al/ZnO: Al junctions are found to vary from 2.56 to 5.45. The reverse saturation currents are 5.21 × 10−9, 1.35 × 10−6, 1.99 × 10−6, 9.99 × 10−7 and 1.02 × 107 A for Al/ZnO: Al junctions. Junction forward current depends on doping concentrations and temperature, whereas reverse saturation current remains independent for Al concentration. The built-in-potential calculated from capacitance for Al/ZnO: Al junctions are 2.74, 2.60, 2.0, 2.50 and 2.43 V corresponding to 1, 2, 3, 4 and 5 mol% of Al. X-ray diffraction study confirmed that the films are polycrystalline, orientated in (0 0 2) plane. Scanning electron microscopy study confirmed circular ring patterns with inside ribbon type structure for Al doped ZnO films.  相似文献   

10.
《Surface science》1986,169(1):246-266
The formation and decomposition kinetics of ethylidyne and propylidyne on Pt(111), were studied using static secondary ion mass spectrometry and temperature programmed desorption. For the maximum amounts of dissociatively adsorbed ethylene and propylene formed during adsorption at 200 K and subsequent temperature programmed desorption, the following activation energies (E) and pre-exponential factors (A) are determined: (a) for ethylidyne formation: E = 17±1 kcal mol−1 and A = 1×1012±1 s−1; (b) ethylidyne decomposition: E = 27 ±2 kcal mole−1 and A = 6×1011±1 s−1; (c) propylidyne formation: E = 17.5 ± 2 kcal mol−1 and A = 7×1012±1 s−1; and (d) propylidyne decomposition: E = 22.5±2 kcal mol−1 and A = 4×1011 ± 1 s−1.  相似文献   

11.
We report the wavelength and temperature characteristics of novel Bi-substituted rare-earth iron garnet films grown on a YIG substrate by a modified liquid phase epitaxy (LPE) technique. The Faraday-rotation spectrum was measured by the magneto-optically modulated dual-frequency technique with the wavelength varied from 800 nm to 1700 nm. The resultant Bi0.37Yb2.63Fe5O12 (BiYbIG) LPE film/YIG crystal structure showed an increased Faraday-rotation coefficient due to Bi3+-ion doping on the dodecahedral sites of the iron garnet without increasing absorption loss; therefore, a good magneto-optical figure of merit, defined by the ratio of Faraday rotation and optical absorption loss, has been achieved (21.5 deg/dB and 30.2 deg/dB at 1300-nm and 1550-nm wavelengths, respectively, at room temperature). In addition, since the Yb3+ and Y3+ ions provide opposite contributions to the wavelength and temperature characteristics of the Faraday rotation, the resultant BiYbIG LPE film/YIG crystal structure showed a flat Faraday-rotation curve versus wavelength and temperature. The Faraday-rotation wavelength coefficient was reduced to 0.06 %/nm at 1550-nm wavelength. The Faraday-rotation temperature derivative was reduced to 0.006 deg/°C at 1300-nm wavelength and 0.007 deg/°C at 1550-nm wavelength, respectively. PACS 78.20.Ls; 81.15.Lm; 75.50.Gg  相似文献   

12.
The damage induced by heavy-ion irradiation has been studied in yttrium iron garnet (Y3Fe5O12 or YIG) films, doped with Ca, Tb and Tm, grown by liquid-phase epitaxy on gadolinium gallium garnet (Gd3Ga5O12 or GGG) substrates. Irradiations of doped-YIG epitaxial films and GGG substrates with 36-MeV 183W and 12-MeV 197Au ions were applied for fluences between 1 × 1013 and 3 × 1015 cm–2 near room temperature. The radiation damage was monitored by micro-Raman spectroscopy and UV–visible optical absorption spectroscopy. Raman spectra revealed that amorphisation was achieved in YIG for both ions, whereas a high lattice disorder was induced in GGG without reaching amorphisation for the Au ion irradiation. Raman spectra also showed that a major damage of the tetrahedral sites was induced in GGG, as previously found for YIG. It is concluded that with such ions reaching the stopping power threshold of track formation in YIG and GGG the observed rate of amorphisation may result from a combination of electronic and nuclear energy losses as calculated using the unified thermal spike model.  相似文献   

13.
《Current Applied Physics》2010,10(2):452-456
The GZO/Ag/GZO sandwich films were deposited on glass substrates by RF magnetron sputtering of Ga-doped ZnO (GZO) and ion-beam sputtering of Ag at room temperature. The effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of these sandwich films was investigated. The microstructures of the films were studied by X-ray diffraction (XRD). X-ray diffraction measurements indicate that the GZO layers in the sandwich films are polycrystalline with the ZnO hexagonal structure and have a preferred orientation with the c-axis perpendicular to the substrates. For the sandwich film with upper and under GZO thickness of 40 and 30 nm, respectively, it owns the maximum figure of merit of 5.3 × 10−2 Ω−1 with a resistivity of 5.6 × 10−5 Ω cm and an average transmittance of 90.7%. The electrical property of the sandwich films is improved by post annealing in vacuum. Comparing with the as-deposited sandwich film, the film annealed in vacuum has a remarkable 42.8% decrease in resistivity. The sandwich film annealed at the temperature of 350 °C in vacuum shows a sheet resistance of 5 Ω/sq and a transmittance of 92.7%, and the figure of merit achieved is 9.3 × 10−2 Ω−1.  相似文献   

14.
We developed dielectric heating-assisted nanoimprint method for rapid fabrication of ultraflexible nanostructures. Using spin-coating polyvinyl-chloride (PVC) film on the glass slide, the dielectric heating on PVC film helped the pattern transfer from the mold to PVC film in few seconds. Various kinds of nanostructures were successfully made on PVC films with about 20-μm thickness. We demonstrated the applications of ultraflexible metallic nanostructures for bending measurement using surface plasmon resonance (SPR) and surface enhanced Raman scattering (SERS) on the curved surfaces. For measuring bending angles using SPR on capped nanowire arrays, the minimum detection angle was 2.4 × 10−3 degree under 0.02 nm wavelength resolution. For SERS measurement, the nanorod arrays on a curved substrate can increase SERS signals for two times as compared to planar SERS substrate.  相似文献   

15.
CdSe/CdS quantum dots (QDs) capped with L-cysteine can provide an effective platform for the interactions with bovine serum albumin (BSA). In this study, absorption and fluorescence (FL) spectroscopy were used to study the binding reactions of QDs with BSA, respectively. The binding constant (??104 M-1) from FL quenching method matches well with that determined from the absorption spectral changes. The modified Stern-Volmer quenching constant (5.23?×?104, 5.22?×?104, and 4.90?×?104 M-1) and the binding sites (??1) at different temperatures (304 K, 309 K, and 314 K) and corresponding thermodynamic parameters were calculated (?G?<?0, ?H?<?0, and ?S?<?0). The results show the quenching constant is inversely correlated with temperature. It indicates the quenching mechanism is the static quenching in nature rather than dynamic quenching. The negative values of free energy (?G?<?0) suggest that the binding process is spontaneous, ?H?<?0 and ?S?<?0 suggest that the binding of QDs to BSA is enthalpy-driven. The enthalpy and entropy changes for the formation of ground state complex depend on the capping agent of QDs and the protein types. Furthermore, the reaction forces were discussed between QDs and BSA, and the results show hydrogen bonds and van der Waals interactions play a major role in the binding reaction.  相似文献   

16.
《Current Applied Physics》2010,10(2):655-658
We have quantitatively investigated the Hall effect in [Co, CoFe/Pt] multilayer films. The [Co, CoFe/Pt] multilayers exhibit large spontaneous Hall resistivity (ρH) and Hall angle (ρH/ρ). Even though the Hall resistivity in [Co, CoFe/Pt] multilayer films (2.7–4 × 10−7 Ω cm) is smaller than that of amorphous RE–TM alloy films which show large spontaneous Hall resistivity (<2 × 10−6 Ω cm), the Hall angle of multilayer (6–8%) is almost twice than that in amorphous rare earth–transition metal alloy films (∼3%). The Hall angle provides evidence of the effects of the exchange interaction of the Hall scattering. The exchange is between conduction electron spins and the localized spins of the transition metal. The large Hall angle of [Co, CoFe/Pt] multilayer can be considered due to the high spin polarization and high Curie temperature of Co and CoFe transition metal layers. Even though the role of interfaces and surfaces in the magnetic properties of multilayer films may dominate that of the bulk, the Hall effects in [Co, CoFe/Pt] multilayer may be mainly dominated by the bulk effect.  相似文献   

17.
Rhodium (Rh) is a 4d metal possessing a large spin orbit coupling strength and spin-Hall conductivity with a very small magnetic susceptibility, implying an insignificant magnetic proximity effect (MPE). We report here the observation of longitudinal spin Seebeck effect (LSSE) using Rh as a normal metal. A Rh film was sputtered on nanometer thick YIG films of highly crystalline nature and extremely low magnetic damping to obtain Rh/YIG hybrid structure. A clear thermal voltage Vth (SSE voltage) was obtained when a temperature gradient was applied on the Rh/YIG hybrid. The Rh film showed a very weak anomalous Hall resistance and the magneto-resistive testing clearly ruled out the magnetization of the Rh films via MPE. The anisotropic magnetoresistance (AMR) revealed a clear spin hall magnetoresistance (SMR) signal in Rh film implying a purely intrinsic spin current generation, free from any parasitic magnetic effects. The work can open a new window in the study of pure and uncontaminated spin current, generated in ferromagnetic insulators, using Rh as spin current detector.  相似文献   

18.
YIG film were grown by LPE and the substrate was carefully removed by grinding. From the57Fe Moessbauer spectrum the orientation of magnetization was determined and the growth-induced magnetic anisotropy constant deduced. For (111) orientation YIG, the magnetic uniaxial anisotropy constant Ku was determined to be 2.3×103 erg cm–3.  相似文献   

19.
The different contents (0 wt.%, 1 wt.%, 3 wt.% and 5 wt.%) of Nd @CdS films were casted using spray pyrolysis deposition procedure. The preferential orientation of crystallites along (002) for all films was noted by XRD profiles. The mean crystalline size (Davg), strain (ɛavg) and dislocation density (δavg) have also been evaluated using XRD results and discussed. The spherical shape morphology of nanoscale particles of Nd@CdS films were analyzed by FE-SEM, exhibits the increased grain sizes with Nd doping concentration. The optical band gaps (2.4–2.36 eV) were found to be decreased with increasing Nd doping content upto (3 wt.%) and increased at 5 wt.% The PL profile displays a stout intensity peak observed at 532 nm and week emission band at 638 nm. The dielectric constant, loss and loss tangent of pristine and Nd@CdS thin films were investigated by dielectric measurements. The optimum values of non-linear refractive index 1.06 × 10−10, 4.41 × 10−11, 3.44 × 10−11 and 1.85 × 10−10 were observed for Nd content varies from pristine to 5 wt.% respectively. Furthermore, optimum non-linear susceptibility values 7.31 × 10−12, 1.079 × 10−12, 4.53 × 10−13 and 1.36 × 10−11 were observed for 0, 1, 3 and 5 wt.% of Nd contents respectively in CdS. Such type of characteristics of Nd doped CdS thin films can be useful for optical devices.  相似文献   

20.
The dependence of structural and electrical properties of SnO2 films, prepared using spray pyrolysis technique, on the concentration of fluorine is reported. X-ray diffraction, FTIR and scanning electron microscope (SEM) studies have been performed on SnO2:F (FTO) films coated on glass substrates. Measured values of Hall coefficient and resistivity are reported. The 7.5 m% of F doped film had a resistivity of 15 × 10−4 Ω cm, carrier density of 18.7 × 1019 cm−3 and mobility of 21.86 cm2 V−1 S−1. The NiO film was coated on an FTO substrate and its electrochromic (EC) behavior was studied and the results are reported and discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号