首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coupling of local surface plasmon(LSP) of nanoparticle and surface plasmon(SP) mode produced by metal film can lead to the enhanced electromagnetic field, which has an important application in enhancing the fluorescence of quantum dots(QDs). Herein, the Ag nanocube and Ag film are used to enhance the fluorescence of CdSe QDs. The enhancement is found to relate to the sizes of the Ag nanocube and the thickness of the Ag film. Moreover, we also present the fluorescence enhancement caused by only SP. The result shows that the coupling between metal nanoparticles and metal film can realize larger field enhancement. Numerical simulation verifies that a nanocube can localize a strong electric field around its corner. All the results indicate that the fluorescence of QDs can be efficiently improved by optimizing the parameters of Ag film and Ag cubes.  相似文献   

2.
以乳液聚合法制备的平均粒径1.2~1.5 μm单分散聚苯乙烯(PS)微球为核,经过超声敏化、化学镀、还原等过程制备了PS/Ag核壳结构复合微球。采用透射电镜、X射线衍射、红外光谱、紫外可见光谱对其形貌、物相、结构与光学性质进行了表征与分析。结果表明:PS/Ag复合微球粒径相对均一;通过多次敏化、控制二次银氨溶液浓度(0.002~0.006 mol/L),可实现对纳米银壳层厚度的调控;纳米银壳层沉积生长过程中,随着PS微球表面银粒子的增多、增大,复合微球的光学等离子体共振吸收峰产生显著的展宽与红移。  相似文献   

3.
We report the formation of highly stable and luminescent ZnO@Cd(OH)2 core-shell nanoparticles by simple introduction of cadmium salt in the initial precursor solution, used to synthesize ZnO nanoparticles by sol-gel route. The cadmium to zinc salt concentration ratio has been also varied to control the growth of ZnO nanoparticles at the smaller particle size. Formation of ZnO@Cd(OH)2 core-shell nanostructure has been confirmed by X-ray diffraction (XRD), energy dispersive analysis of X-rays (EDAX) and X-ray photoelectron spectroscopy (XPS). UV-vis absorption spectroscopy exhibits blue-shift in absorption edge on increasing cadmium concentrations. The photoluminescence emission spectra showed the remarkably stable and enhanced visible (green) emission from suspended ZnO@Cd(OH)2 nanoparticles in comparison to bare ZnO nanoparticles. It is postulated that Cd(OH)2 layer at the surface of ZnO nanoparticles prevents the agglomeration of nanoparticles and efficiently assists the trapping of hole at the surface site, a first step necessary for visible emission. The Fourier transform infrared spectroscopy (FTIR) also supports our assumption about surface chemistry.  相似文献   

4.
《Current Applied Physics》2014,14(9):1287-1292
Surface Plasmon resonance of Ag nanoparticles in the vicinity of a high impedance surface is investigated. Mushroom-like nanostructures were vertically grown on silicon substrate to form a high impedance surface operating in the range of optical frequencies. Formation of Ag nanoparticles on the fabricated high impedance surface was realized using plasma bombardment process. Optical measurements show an enhancement in the surface plasmon resonances of Ag nanoparticles. Also it was shown that the plasmon resonance peak of the Ag nanoparticles shifts to blue when Ag nanoparticles approach to the high impedance surface.  相似文献   

5.
庄陶钧  苏子生  刘亚东  初蓓  李文连  范翊 《发光学报》2011,32(12):1266-1270
在有机小分子太阳能电池CuPc/C60和TiOPc/C60的阳极ITO表面分别制备了一层Ag纳米颗粒,并采用MoO3作为阳极缓冲层,器件的性能均得到有效改善.Ag纳米颗粒的引入所形成的表面等离子激元共振可显著提高有机光活性层的吸收效率和光生激子的分解效率;而MoO3有效抑制了光生激子在有机/金属界面处发生的猝灭,提高了...  相似文献   

6.
佟建波  黄茜  张晓丹  张存善  赵颖 《物理学报》2012,61(4):47801-047801
本文采用共烧结工艺将纳米Ag颗粒引入Yb3+, Er3+共掺的NaYF4上转换材料中, 利用X射线衍射及扫描电子显微镜技术对制备的NaYF4材料进行结构特性和表面形貌的表征, 通过吸收谱及荧光光谱测试技术对NaYF4材料光吸收及光发射特性进行表征. 通过对纳米Ag颗粒引入量的优化, 获得了Yb3+, Er3+共掺的NaYF4上转换材料荧光发射峰的增强, 300—800 nm全光谱范围内增益达28%, 在544 nm处获得最大增益55%, 具有显著的荧光增强效果. 同时分析了不同数量纳米Ag颗粒的引入对NaYF4材料吸收谱及光致发光特性影响, 指出了表面等离子激元的光猝灭及共振吸收增强作用机理.  相似文献   

7.
利用静电纺丝技术制备了一种聚丙烯腈/银纳米粒子复合纳米纤维的表面增强拉曼光谱基底。通过调节聚丙烯腈溶液的浓度可得到不同直径、不同厚度的纤维薄膜,将聚丙烯腈的N,N-二甲基甲酰胺溶液与硝酸银溶液混合得到聚丙烯腈/Ag种子溶液,然后利用静电纺丝技术制备聚丙烯腈/Ag种子/AgNO3复合纳米纤维;加入AgNO3并利用水合肼二次还原后可制备适合拉曼检测的聚丙烯腈/Ag纳米粒子复合纤维膜,聚合物纤维表面和内部的金属纳米粒子的密度可调节。通过调节不同的纳米粒子的密集程度,可构筑出具有较高的电磁场增强效果的特殊的“热”结构(高局域强电磁场的亚波长区域)。而聚合物纤维内部的银纳米粒子可通过溶胀作用吸附更多的探针分子,提高拉曼检测的灵敏度。该基底有很好的SERS信号,并且可大规模制备。  相似文献   

8.
9.
A plasma polymerization method was used to modify the surfaces of ZnO nanoparticles, and the effects of plasma surface modification on photoluminescence (PL) property of ZnO nanoparticles were studied. High-resolution transmission electron microscopy images revealed that a thin film of vinyl acetate (VAC) polymer layer (∼4 nm) was uniformly deposited on the surfaces of the ZnO nanoparticles. The chemical structure of the polymer layer was identified by Fourier transform infrared (FTIR) experiments. The photoluminescence (PL) intensity of the ZnO nanoparticles was found to be significantly decreased by the deposited plasma films. For the particle of smaller size, the ultrathin film indicated better ultraviolet (UV) shielding ability.  相似文献   

10.
Zinc oxide thin films were deposited on silicon substrates via hydrothermal method. Microstructures, surface topographies and optical properties of ZnO thin films were systematically investigated by X-ray diffraction, atomic force microscopy and fluorescence spectrophotometer. The mean grain size and surface roughness of the thin films decrease first and then increase with increasing the concentration of zinc nitrate hexahydrate. The photoluminescence spectra of ZnO thin films, excited by the 240, 320, 360, 380 and 400 nm excitation wavelength, were investigated in detail. Based on our analysis, it can be noted that mechanisms of the ultraviolet, violet and blue emissions are attributed to the transitions from the localized levels below the conduction band, zinc vacancy, interstitial zinc and extended interstitial zinc levels to the valance band, respectively. Blue–violet emissions of ZnO have great potential in light emitting and biological fluorescence labeling applications.  相似文献   

11.
Hybrid nanostructures of quantum dots(QDs) and metallic nanostructure are attractive for future use in a variety of optoelectronic devices. For photodetection applications, it is important that the photoluminescence (PL) of QDs is quenched by the metallic nanostructures. Here, the quenching efficiency of CdSe/ZnS core-shell quantum dots (QDs) with different sized gold nanoparticles (NPs) films through energy transfer is investigated by measuring the PL intensity of the hybrid nanostructures. In our research, the gold NPs films are formed by the post-annealing of the deposited Au films on the quartz substrate. We find that the energy transfer from the QDs to the Au NPs strongly depends on the sizes of the Au NPs. For CdSe/ZnS QDs direct contact with the Au NPs films, the largest energy transfer efficiency are detected when the resonance absorption peak of the Au NPs is nearest to the emission peak of the CdSe/ZnS QDs. However, when there is a PMMA spacer between the QDs layer and the Au NPs films, firstly, we find that the energy transfer efficiency is weakened, and the largest energy transfer efficiency is obtained when the resonant absorption peak of the Au NPs is farthest to the emission peak wavelength of CdSe/ZnS QDs. These results will be useful for the potential design of the high efficiency QDs optoelectronic devices.  相似文献   

12.
毕夏  左健  杨晴 《化学物理学报》2012,25(4):501-506
以硝酸银和甲硼烷叔丁胺络合物分别为反应前驱物和还原剂,在油胺油酸体系中,利用超声辅助方法在室温下制备出粒径为3.4 nm的单分散银纳米颗粒.通过XRD、TEM和EDX对产物进行表征,结果显示产物具有典型的面心立方结构,单分散特征明显、尺寸分布均匀,且最可几尺寸为3.4 nm.超声反应时间、油胺和油酸的用量及其比例对银纳米晶的形貌和尺寸有重要影响,其中油胺溶剂的使用是控制单分散银纳米晶尺寸的关键.同时,研究显示单分散银纳米颗粒对罗丹明6G模型分子具有很强的拉曼增强效应;双光子荧光照片显示其具有很好的荧光增强效应.  相似文献   

13.
采用基于传统熔融淬冷技术的热化学还原法制备了系列Ag纳米颗粒复合Ho3+/Tm3+共掺铋锗酸盐玻璃样品,研究了Ag纳米颗粒含量对玻璃2μm发光特性的影响.结果表明,Ag纳米颗粒的表面等离子体共振带位于500—900 nm,峰值位于650 nm,透射电子显微镜图像中观察到均匀分布的Ag纳米颗粒,尺寸约为5—10 nm.通过测试玻璃样品在1.7—2.3μm波段的荧光光谱发现,Ag掺杂后Ho3+离子2μm处的荧光强度得到了极大的提高,其中AgCl掺杂质量分数为0.3%时的荧光强度比未掺杂时的荧光强度增强10倍,这归因于Ag纳米颗粒的局域场增强作用.计算得到Ho3+离子的吸收截面为0.491×10-20cm-2,发射截面为1.03×10-20cm-2,当增益系数为0.2时即可实现正的增益.  相似文献   

14.
In this paper, silica-coated Au nanoparticles (Au@SiO2) were prepared by the technique of vortex mixing. Subsequently, these monodisperse Au@SiO2 nanoparticles were functionalized by the silane reagents 3-aminopropyltriethoxysilane (APS) and 3-mercaptopropyltriethoxysilane (MPTS) respectively. Then, these NH2-terminated and SO32−-terminated Au@SiO2 nanoparticles were respectively assembled onto the substrates, which have been patterned with different self-assembly monolayers (SAMs), to form close-packed two-dimensional Au@SiO2 nanoparticle arrays by electrostatic interactions. The morphologies and the optical properties of Au@SiO2 nanoparticles with different silica-shell thicknesses were characterized by TEM and UV-vis. The compositions and zeta potentials of the functionalized Au@SiO2 nanoparticles were examined by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). The morphologies of the patterns formed on different templates were characterized by atomic force microscopy (AFM).  相似文献   

15.
In order to investigate the effects of the crystallite size on the photoluminescence (PL) properties of a phosphor, monodisperse spherical SiO2/Y2O3:Eu3+ phosphor core/shell particles were synthesized. On the surface of the core particles prepared by the Stöber method, the phosphor shell was continuously coated by a heterogeneous precipitation method. Because the growth of the crystallite was restricted by the shell thickness, the crystallite size could be successfully controlled at the same firing conditions. The PL intensity, the asymmetric ratio and thus the color purity were significantly decreased with the decrease of the crystallite size. In addition, the position of charge transfer band in the PL excitation spectrum was red-shifted with the decrease of the crystallite size.  相似文献   

16.
采用新型的热化学还原法,制备了银纳米颗粒掺杂的铋酸盐复合玻璃材料。利用紫外-可见吸收光谱观察到了银纳米颗粒表面等离子谐振(SPR)吸收的峰值位移特性,用拉曼光谱表征了引入银纳米颗粒后玻璃的结构变化。借助飞秒激光脉冲激发下的Z扫描与光克尔闸技术,在近红外波段下研究了材料的三阶非线性光学特性。研究结果表明银纳米颗粒铋酸盐复合材料有着亚皮秒级的非线性响应时间,并且其非线性折射率γ在纳米颗粒的热电子效应以及局部场效应的影响下,较基质玻璃最高可以提升29倍。  相似文献   

17.
《Physics letters. A》2019,383(21):2542-2550
Present research interest is to highlight on the manufacturing of core-shell nanoparticles because of core activity with unique properties and surface modification by a shell in the diverse fields (e.g. optoelectronic, catalysis and magneto-optics). In addition, the combined optical properties of magnetic-plasmonic core-shell NPs make them ideal candidates for many applications in biomedical fields. The influence of Fe-core and Au-shell for the formation of the core-shell viz. spherical and spheroidal nanostructures is studied using the discrete dipole approximation method. DDA is an approximation method and its accuracy is compared to Mie theory results for spherical core-shell NPs as Mie theory gives the exact solution to spherical targeted NPs. DDA calculations are further extended to spheroidal core-shell nanostructures. It is observed that the localized surface plasmon resonance (LSPR) peak position in considered core-shell nanostructures is enhanced by changing the cores and shell thickness in the core-shell spherical nanostructures and aspect ratio as well as shell thickness in spheroidal core-shell nanostructures. The absorption spectra are found between 363–788 nm wavelength ranges and can be tuned into UV-visible-near-infrared region of the electromagnetic (EM) spectrum in accordance with desired applications. It has been found that the Fe@hollow@Au and prolate core-shell nanostructures show enhancement to LSPR peaks, bandwidth and their corresponding intensities in comparison to other considered spherical and spheroidal core-shell nanostructures. Tunability in core size, shell thickness, aspect ratio, and configuration will open new potential uses of suitable magnetic-plasmonic core-shell nanostructures in cancer therapy, tissue engineering, drug delivery, and many more of biomedical fields.  相似文献   

18.
研究将制备的纳米银粒子作为表面增强拉曼光谱的增强试剂,实现对宠物饲料中三聚氰胺的快速定性定量分析。以709与1542cm-1处拉曼位移作为定性依据,以1149cm-1峰强度作为归一化标准,在1.0~10.0mg·kg-1浓度范围实现定量计算,检测限0.5mg·kg-1。研究发现,纳米银粒子对三聚氰胺具有较强的拉曼增强效应,特征峰信号强度与纳米银粒子加入时间,溶液涡旋强度有很大的关系,同时也受提取溶剂的种类、提取方式及样品加入量的影响。本方法中每个样品5min内完成分析,与现有方法相比,快速简便,对宠物饲料中三聚氰胺实现现场、快速检测。  相似文献   

19.
The effects of reaction temperature on the average particle size, surface defects and band gap of ZnO nanoparticles have been systematically investigated. The hydrothermal method was employed to synthesize ZnO nanostructures. The nanostructures of the resultant ZnO were studied by means of X-ray diffraction, Transmission Electron Microscopy, Ultraviolet-visible absorption, Raman, Fourier transform Infra-red and Photoluminescence spectroscopy. With increase in the reaction temperature, the peak position of the ultraviolet emission shifts slightly towards the red wavelength and the crystal quality was improved. The prepared ZnO nanoparticles have residual intermediate compound on the surface in the form of an acetate group, which acts as defect centers for the emission of yellow emission. Spectra analyses show that the visible emission depends strongly on the preparation conditions.  相似文献   

20.
In this paper, time-varying photoconductivity (PC) and the photoluminescence (PL) of different complexes were studied. Due to thick polymer layer hindering light penetrating into porous silicon (PS) layer, intrinsic PS luminescence in polymer/PS system disappeared. The physical origin of PL may be related to the recombination mechanisms involving surface defect states such as silicon oxide, siloxene. Due to carrier transfer controlled by different energy barrier, different devices prepared from different doped Si wafer showed opposite current-voltage characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号