首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/28S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.  相似文献   

2.
Qiu GM  Xu CK  Huang C 《光谱学与光谱分析》2011,31(11):2906-2909
采用高温固相法合成了Ca2 SnO4∶Tb3+绿色荧光粉.利用X射线衍射分析了Ca2 SnO4∶Tb3+物相的形成.测量了Ca2 SnO4∶Tb3+的激发和发射光谱,激发光谱由一个宽激发峰组成,研究了Tb3+浓度对样品激发光谱的影响,结果显示,随Tb3+浓度增大,宽带激发峰发生了红移.发射光谱由四个主要发射峰组成,峰值...  相似文献   

3.
4.
A blue-emitting phosphor, Eu2+-activated Mg3Ca3(PO4)4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg3Ca3(PO4)4: Eu2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu2+ concentration in Mg3Ca3(PO4)4: Eu2+ on the PL were also investigated. The result reveals that Mg3Ca3(PO4)4: Eu2+ is a potential blue-emitting phosphor for white LEDs.  相似文献   

5.
In this study, the phosphors (Sr1−x , Zn x )0.9(Al2−y , B y )O4 doped 10 mol % Eu2+, were prepared by combustion method as the fluorescent material for white light emitting diodes (WLEDs), performing as a light source. The luminescent properties were investigated by changing the combustion temperature, the boron concentration, and the ratio of Sr to Zn. The luminescence, crystallinity and particle morphology were investigated by using a luminescence spectrometer, X-ray diffractometer (XRD) and transmission electron microscopy (TEM), respectively. The highest intensity of Sr0.9(Al2−y , B y )O4: Eu0.12+ phosphor was achieved when the combustion temperature was 600° and the concentration of B3+ was 8 mol % of the aluminate. A new blue emission was observed when the high Zn concentration (x ⩾ 0.8), and this blue emission disappeared with the Zn concentration became lower than 0.8. The combustion method synthesized phosphor (Sr0.6, Zn0.4)0.9(Al1.92, B0.08)O4: Eu0.12+ showed 3.3 times improved emission intensity compared with that of the Sr0.9(Al1.92, B0.08)O4:Eu0.12+ phosphor under λ ex = 390 nm.   相似文献   

6.
The Ca2SiO4:Dy3+ phosphor was synthesized by the high temperature solid-state reaction method in air.The emission spectrum of Ca2SiO4:Dy3+ phosphor shows several bands at 486, 575, and 665 nm under the 365-nm excitation. The effects of Li+, Na+, and K+ on the emission spectrum of Ca2SiO4:Dy3a+ phosphor were studied. The results show that the emission spectrum intensity is greatly influenced by Li+, Na+,and K+. The charge compensation concentration corresponding to the maximum emission intensity is different with different charge compensations.  相似文献   

7.
K3Gd(PO4)2:Tb3+ phosphors are synthesized by the solid reaction method,and the phases and luminescence properties of the obtained phosphors are well characterized.The emission spectra of K3Gd(PO4)2:Tb3+ exhibit the typical emissions of Tb3+.Concentration quenching of Tb3+ is not observed in K3Gd(PO4)2:Tb3+,likely because the shortest average distance of Tb3+–Tb3+ in K3Gd(PO4)2:Tb3+ is adequately long such that energy transfer between Tb3+–Tb3+ ions cannot take place effectively.This result indicates that K3Tb(PO4)2 phosphors have potential application in near ultraviolet(n-UV)-convertible phosphors for white light-emitting diodes.  相似文献   

8.
A new red-emitting phosphor Ca9Lu(PO4)7:Ce3+, Mn2+ has been synthesized by solid-state reaction, and its luminescence properties have been investigated. The broad red emission peaked at 645 nm of Mn2+ is greatly enhanced by the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. The energy transfer was demonstrated to belong to a resonant type via a dipole–quadrupole mechanism. The critical distance for Ce3+→Mn2+ energy transfer was calculated to be 15.04 Å by concentration quenching method. Preliminary results indicate that the phosphor might be a promising red phosphor for UV-based white LEDs.  相似文献   

9.
NaZnLa(PO4)2中Ce3+和Tb3+的发光   总被引:2,自引:0,他引:2       下载免费PDF全文
采用高温固相反应合成了NaZnLa(PO4)2中掺杂Ce3+、Tb3+的荧光体,对其晶体结构、发光行为进行了研究,并尝试对NaZnLa(PO4)2:Ce,Tb荧光体进行调制。NaZnLa(PO4)2是LaPO4的同构物,为单斜晶系独居石结构,从XRD谱数据得到NaZnLa(PO4)2基质的晶胞参数为a=0.6823nm,b=0.7045nm,c=0.6497nm,β=1039°,v=0.303nm3,其晶胞参数与单斜LaPO4的晶胞参数相似。在NaZnLa(PO4)2:Ce,Tb荧光体中,Ce3+对Tb3+有良好的敏化作用,掺杂适量的BO33-、Al3+、Dy3+,可以增强发光亮度。  相似文献   

10.
11.
Europium (III) ions doped red phosphors K4Ca(PO4)2 were prepared first time by high temperature solid state reaction method. The prepared phosphors structure was examined by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses. The thermal properties of the synthesized phosphor were investigated by differential scanning calorimetry (DSC) analysis. Photoluminescence (PL) spectra of K4Ca(PO4)2:Eu3+ phosphors have shown strong red emission at 618 nm (5D07F2) with near UV an excitation wavelength of λexc=394 nm (7F05L6). In addition, the decay curves and CIE color coordinate measurements are also carried out. Hence, emission and excitation characterization of synthesized phosphors shows that the phosphors may be a promising red component for the application in the white light emitting diodes (WLEDs).  相似文献   

12.
A blue-green emitting phosphor (Ba1.95, Eu0.05)ZnSi2O7: B x 3+ was prepared by combustion synthesis and an efficient blue-green emission under near-ultraviolet was observed. The luminescence, crystallinity and particle sizes were investigated by using luminescence spectrometry, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The emission spectrum shows a single band centered at 503 nm, which corresponds to the 4f 65d 1 →4f 7 transition of Eu2+. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes. The optical absorption spectra of the (Ba1.95, Eu0.05)ZnSi2O7: B 0.06 3+ exhibited band-gap energies of 3.9 eV. The results showed that boric acid was effective in improving the luminescence intensity of (Ba1.95, Eu0.05)ZnSi2O7, and the optimum molar ratio of boric acid to zinc nitrate was about 0.06. The phosphor (Ba1.95, Eu0.05)ZnSi2O7: B0.063+ synthesized by combustion method showed 1.5 times improved emission intensity compared with that of the Ba1.95ZnSi2O7: Eu0.052+ phosphor under λ ex = 353 nm.   相似文献   

13.
The luminescence properties of polyphosphates NaEu x Gd(1?x)(PO3)4 (x = 0–1.00) and the energy transfer from Gd3+ to Eu3+ were studied. In undoped NaGd(PO3)4 sample, the photon cascade emission of Gd3+ was observed under 8S7/26GJ excitation (201 nm) in which the emission of a red photon due to 6GJ6PJ transition is followed by an ultraviolet photon emission due to 6PJ8S7/2 transition. When part of Gd3+ ions in the host NaGd(PO3)4 were substituted by Eu3+ ions, the NaGd(PO3)4:Eu3+ sample showed intensive red emission under 172-nm vacuum-ultraviolet (VUV) excitation which is suitable for mercury-free fluorescent lamps and plasma display panel applications. Based on the VUV–visible spectroscopic characteristics and the luminescence decay properties of NaGd(PO3)4:Eu3+, it was found that the quantum cutting by a two-step energy transfer from Gd3+ to Eu3+ can improve the red emission of Eu3+ ions under VUV excitation but only a part of the excitation energy in the excited 6PJ states within Gd3+ ions can be transferred to Eu3+ ions for its red emission, and the nonradiative energy transfer efficiencies from the excited 6PJ states within Gd3+ to Eu3+ were calculated.  相似文献   

14.
A single-phased white-light-emitting phosphor Ca8Mg(SiO4)4Cl2:Ce3+, Tb3+ (CMSC:Ce3+, Tb3+) is synthesized by a high temperature solid-state reaction method, and its photoluminescence properties are investigated. The obtained phosphor exhibits a strong excitation band between 250 and 410 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip. Energy transfer from Ce3+ to Tb3+ ions has been investigated and demonstrated to be a resonant type via a dipole–dipole mechanism. The energy transfer efficiency as well as the critical distance is also estimated. Furthermore, the phosphors can generate light from yellow-green through white and eventually to blue by properly tuning the relative ratio of Ce3+ to Tb3+ ions grounded on the principle of energy transfer. The results show that this phosphor has potential applications as a single-phased phosphor for UV white-light LEDs.  相似文献   

15.
Ultrafine M5(PO4)3F:Dy3+ (M = Ca, Ba) phosphors were prepared via combustion process using metal nitrates as precursors. The formation of crystalline phosphate was confirmed by X-ray diffraction pattern. The PL excitation spectra show the excitation peaks observed at 250 to 400 nm due to ff transition of Dy3+ ion, which are useful for solid-state lighting purpose (mercury free excitation). The PL emission of Dy3+ ion by 348 nm excitation gave an emission at 489 nm (blue), 582 nm (yellow) and 675 nm (red). All the characteristics of BYR emissions like BGR indicate that Dy doped Ca5(PO4)3F and Ba5(PO4)3F phosphors are good candidates that can be applied in solid-state lighting phosphor (mercury free excited lamp phosphor) and white light LED.   相似文献   

16.
研究了Sr3Gd(PO4)3 : Tm3 和GdPO4 : Tm3 样品的结构特性、光谱特性.GdPO4 : Tm3 为单斜晶系,基质掺入铥离子后结构没有明显变化.GdPO4:Tm3 在164和210 nm附近有强烈的吸收峰.位于164 nm附近的强烈的吸收峰是归因于基质的吸收引起,210 nm附近的吸收峰则归因于Gd 的8S7/2-6GJ的能级跃迁.在164 nm真空紫外光激发下,样品于453及363 nm处有较强的发射峰,发射主峰位于453nm,属于Tm3 的1D2→3H4(22,123 cm-1)跃迁的典型发射.由于阳离子质量的不同,Sr3Gd(PO4)3:Tm3 在166 nm附近的激发峰高于GdPO4: Tm3 的同位置的激发峰,其在363 nm处的发射有明显减弱,而在453 nm处的蓝色发射有显著的增强.  相似文献   

17.
A novel orange-emitting phosphor, Ca2.6Sr2.4(PO4)3Cl:Eu3+, was prepared by a modified solid-state reaction and X-ray powder diffraction (XRD) analysis confirmed the formation of Ca2.6Sr2.4(PO4)3Cl:Eu3+. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 380 to 500 nm, and exhibited bright orange emission. The effects of the doped-Eu3+ concentration in Ca2.6Sr2.4(PO4)3Cl:Eu3+ on the PL were investigated in detail. The results showed that the relative PL intensity decreases with Eu3+ concentration increasing due to concentration quenching. TEM images show that the grain size of Ca2.6Sr2.4(PO4)3Cl:Eu3+ is about 45 nm, which is in full agreement with the theoretical calculation data from the XRD patterns.  相似文献   

18.
刘吉地  王育华 《物理学报》2010,59(5):3558-3563
采用溶胶-凝胶法(sol-gel method)于不同气氛条件下成功合成了Zn1.92-xMgxSiO4:0.08Mn2+(0≤x≤0.12)系列粉末样品.利用X射线衍射(XRD)、光致发光(PL)谱等分析手段对Zn1.92-xMgxSiO4:0.08Mn2+系列  相似文献   

19.
Photoluminescence and excitation spectra of the spinel-type MgGa2O4 with 0.5 mol. % Mn2+ ions and Eu3+ content from 0 to 8 mol. % have been investigated in this work at room temperature. Polycrystalline samples were synthesized via high-temperature solid-state reaction method. Photoluminescence spectra of all samples exhibit host emission presented by a broad “blue” band peaking ∼430 nm, which consists of at least three elementary bands that correspond to different host defects. Excitation of the host luminescence showed the broad band with a maximum at 360 nm. Characteristic bands of d–d transitions of Mn2+ ions and f–f transitions of Eu3+ ions together with charge-transfer bands (CTB) of these ions were also found on the excitation spectra. Mn2+ and Eu3+ co-doped samples emit in green and red spectral regions. Mn2+ ions are responsible for the green emission band at 505 nm (4Т16А1 transition). The studies of photoluminescence spectra of activated samples with different Eu3+ ions content show characteristic f–f luminesecence of Eu3+ ions. The maximum of Eu3+ emission was found at 618 nm (5D07F2) and optimal concentration of activator ions was around 4 mol. %.  相似文献   

20.
Structural and spectroscopic characterizations of the Ce3+/Tb3+(Mn2+) solely and Ce3+–Tb3+(Mn2+) doubly doped phosphate compound Ca9ZnLi(PO4)7 with β-Ca3(PO4)2 structure have been performed by powder X-ray diffraction and photoluminescence spectra measurements. The weak green emission from Tb3+ and red emission from Mn2+ are significantly enhanced by introduction of sensitizer Ce3+ ions due to an efficient resonant-type energy transfer from Ce3+ to activators Tb3+ or Mn2+. The energy transfer efficiency and the mechanism have been estimated based on spectroscopic data. Meanwhile, the critical distances for energy transfer between the Ce3+ and Tb3+ or Mn2+ ions are also calculated by the method of spectral overlapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号