首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The acoustic behaviors of oxygen-reduced barium titanate (BaTiO3-δ) single crystals with δ∼0.04 were investigated as a function of temperature by using Brillouin spectroscopy. The longitudinal acoustic mode of the moderately-reduced BaTiO3 (BTO) showed two pronounced anomalies at approximately 112 °C and −11 °C, which correspond to the cubic-tetragonal and tetragonal-orthorhombic phase transition temperature, respectively. These temperatures were lower by more than 10 °C compared to those of the pure BaTiO3 suggesting that the disorder introduced by oxygen vacancies lowers the phase transition temperatures. The paraelectric phase of the reduced BaTiO3 were characterized by substantial softening of the longitudinal acoustic mode and the growth of central peaks centered at zero frequency. These anomalies were observed in a certain temperature range above the Curie temperature, indicating that pretransitional precursor polar clusters exist in the cubic phase and that their dynamics are responsible for the acoustic anomalies caused by electrostrictive coupling between the strain and the polarization. The relaxation time of the precursor polar clusters derived from the central peak exhibited a critical slowing-down behavior showing that their dynamics becomes more sluggish as temperature approaches the Curie point.  相似文献   

2.
《Current Applied Physics》2019,19(11):1195-1203
The acoustic and vibrational properties of Mn-doped (Na1/2Bi1/2)TiO3-xBaTiO3 with x = 0.05 were investigated by using Brillouin and Raman spectroscopies and compared with those of undoped crystals. The mode frequency and the half width of the Brillouin doublet of the longitudinal acoustic mode showed more drastic changes near the dielectric maximum temperature compared to the broad and diffused changes of the undoped crystals, which indicates that Mn-doping induces polar domains larger than the typical polar nanoregions formed in undoped counterpart. The acoustic anomalies were most pronounced along the <100> direction suggesting that the polarization fluctuations are anisotropic and largest along this direction. Temperature dependence of Raman spectra showed that there are two characteristics temperatures where mode splitting occurs due to local symmetry changes. The high-temperature anomaly was associated with the changes in the acoustic properties, while the low-temperature mode splitting was related to the dielectric anomaly near depolarization temperature.  相似文献   

3.
Fe-based cadmium sulfide alloy thin films have been grown on c-plane sapphire substrates by a low-pressure metalorganic chemical vapor deposition technique at different growth temperatures. From X-ray diffraction and absorption spectra of the samples, the evolutions with growth temperature show an inflexion at the growth temperature of 300 °C. This was attributed to the phase transformation from zinc-blende to wurtzite. With increasing growth temperature from 270 °C to 360 °C, Fe concentration in the films increases monotonously. The electronic states of Cd1−xFexS were investigated by X-ray photoelectron spectroscopy. Magnetic measurement shows Van Vleck paramagnetism of the Cd1−xFexS thin film in the temperature region below 7 K.  相似文献   

4.
The binary system of 0.8Pb(Zr1/2Ti1/2)O3–0.2Pb(Ni1/3Nb2/3)O3 ceramics were synthesized by conventional mixed oxide and columbite method. X-ray diffraction analysis demonstrated the coexistence of both the rhombohedral and tetragonal phases for the columbite prepared sample. Rhombohedral to tetragonal phase transition for columbite method was different compared with those of the mixed oxide method. The permittivity shows a shoulder at the rhombohedral to tetragonal phase transition temperature TRho–Tetra = 195 °C, and then a maximum permittivity (36,000 at 10 kHz) at the transition temperature Tm = 277 °C on ceramics prepared with the columbite method. However, piezoelectric coefficient (d33) was measured to be 282 pC/N for the conventional method and higher than the columbite method. The results were related to the phase compositions and porosity of the ceramics.  相似文献   

5.
The magnetodielectric effect (the influence of a magnetic field H on the dielectric constant ?) and the magnetoelectric effect (the influence of an electric field E on the magnetoelectric constant ??) of the PbFe1/2Nb1/2O3 ceramics have been investigated at temperatures T in the range from 50 to 200°C, including the Curie point T C ? 98°C. It has been demonstrated that there is a correlation of these effects with the shift of the ferroelectric-paraelectric phase transition temperature in a magnetic field.  相似文献   

6.
The polycrystalline sample of Na1/2Dy1/2TiO3 ceramic was prepared by a standard high-temperature solid-state reaction technique. X-ray structural analysis confirmed the formation of single-phase (with minor secondary phase) compound in the orthorhombic (distorted tetragonal) crystal system at room temperature. Study of surface morphology by scanning electron microscope exhibits uniform distribution of rectangular/cubical grains with less voids. The elemental composition of the prepared compound was confirmed by energy dispersive X-ray spectroscopy microanalysis. Detailed studies of dielectric properties exhibit a dielectric anomaly at 94 °C suggesting a possible ferroelectric–paraelectric phase transition in the compound. The activation energy (Ea), calculated from the temperature dependence of ac conductivity plot, was found to be small (∼0.1 eV) in low temperature and large (∼0.5 eV) in high temperature region.  相似文献   

7.
Multiferroic BiFeO3 and Bi0.92Dy0.08FeO3 ceramics were prepared to study their crystal structures and piezoelectric properties. BiFeO3 exhibits rhombohedral phase below 810 °C. Although Bi0.92Dy0.08FeO3 ceramic also shows rhombohedral phase at room temperature, it allows the coexistence of rhombohedral phase and orthorhombic phase at 460–650 °C. Both samples have maximum polarizations of >21 μC/cm2 and piezoelectric d33 values of ~37 pC/N at room temperature. Their polarized slices show the dielectric anomalies and impedance anomalies because of vibrating resonances below 500 °C, and the thickness vibration electromechanical coupling factor is ~0.6 and ~0.4 for BiFeO3 and Bi0.92Dy0.08FeO3, respectively. The vibrating resonances confirm piezoelectric responses. Furthermore, samples' impedance and resistance decrease fast with temperature increasing, which screens piezoelectric response above 550 °C.  相似文献   

8.
Structural phase transitions in BaCeO3 have been investigated with combination of differential scanning calorimetry (DSC), dilatometry and high temperature X-ray diffraction with high sensitivity and resolution. In DSC curve at heating procedures, baseline shift, endothermic peak and another baseline shift were observed at 260 °C, 385 °C and 895 °C, respectively. From DSC curve at cooling procedure, it was revealed that all the baseline shifts and peak were reversible. No hysteresis was observed in the both baseline shifts indicating second order phase transition at 260 °C and 895 °C with variation of specific heat capacity, ΔCp, of 10 J/mol K and 7 J/mol K, respectively; whereas the order of the phase transition at 385 °C was revealed to be the first since hysteresis was detected around 370–385 °C. Variation of enthalpy, ΔH, at the phase transition was 45 J/mol. High temperature X-ray diffraction measurements have revealed that the crystal structure of BaCeO3 changes from primitive orthorhombic perovskite through body-centered one, rhombohedral distorted one to cubic one around 280 °C, 400 °C and 900 °C, showing correspondence with DSC curves. Dependence of molar volume on temperature estimated from high temperature X-ray diffraction showed agreement with thermal expansion behavior observed with dilatometry.  相似文献   

9.
New solid electrolytes containing acetamide and lithium bioxalato borate (LiBOB) with different molar ratios have been investigated. Their melting points (Tm) are around 42 °C. The ionic conductivities and activation energies vary drastically below and above Tm, indicating a typical feature of phase transition electrolyte. The ionic conductivity of the LiBOB/acetamide electrolyte with a molar ratio of 1:8 is 5 × 10? 8 S cm? 1 at 25 °C but increases to 4 × 10? 3 S cm? 1 at 60 °C. It was found that anode materials, such as graphite and Li4Ti5O12, could not discharge and charge properly in this electrolyte at 60 °C due to the difficulty in forming a stable passivating layer on the anodes. However, a Li/LiFePO4 cell with this electrolyte can be charged properly after heating to 60 °C, but cannot be charged at room temperature. Although the LiBOB/acetamide electrolytes are not suitable for Li-ion batteries due to poor electrode compatibility, the current results indicate that a solid electrolyte with a slightly higher phase transition temperature than room temperature may find potential application in stationary battery for energy storage where the electrolyte is at high conductive liquid state at elevated temperature and low conductive solid state at low temperature. The interaction between acetamide and LiBOB in the electrolyte is also studied by Raman and FTIR spectroscopy.  相似文献   

10.
Magnetic properties have been investigated on Mn doped TiO2(Ti0.98Mn0.02O2) bulk samples prepared by solid state reaction, which were sintered at different temperature ranging from 450 °C to 900 °C in air and argon atmosphere, respectively. The results show that the magnetic properties were strongly dependent on the sintering temperature and atmosphere. For samples sintered in air, the magnetization initially increase with the increase of sintering temperature up to 600 °C and thereafter it decrease. While the magnetization of samples sintered in argon atmosphere decreases monotonically with the increase of sintering temperature. Furthermore, for samples sintered at 600 °C in air, the magnetic susceptibility exhibits a dominant Curie-Weiss behaviour and no magnetic transition is observed over the temperature range from 10 to 300 K. In contrast, for samples sintered in argon atmosphere, besides the magnetic transition near 45 K perhaps caused by Mn3O4, another magnetic transition appears near room temperature.  相似文献   

11.
Raman scattering was applied to study the high-temperature phase transition (near 175°C) in KH2PO4. Drastic temperature-dependent changes were observed to take place in the normal modes of B1 symmetry between 1000–3400 cm?1. The disintegration of the dominant broad feature near 2500 cm?1 when temperature rises beyond 150°C suggests that the alteration of the hydrogen-bond network is closely connected with this high-temperature phase transition.  相似文献   

12.
Pure and Nb-doped Pb(Zr1−xTix)O3 (x = 0.47, 0.48, 0.50) ceramics were prepared by conventional solid-state reaction technique. Dielectric anomalies are observed in both kinds of samples near room temperature. The anomalies could be depressed by donor doping and prefer to be significant in ceramics with tetragonal crystallographic phase. Phase transition mechanism and domain wall pinning effect are proposed to explain this anomaly, and the former is considered as the dominated reason. Further results of the pyroelectric measurements confirm the existence of the ferroelectric–ferroelectric phase transition.  相似文献   

13.
《Solid State Ionics》2006,177(7-8):669-676
The electrical conductivity of sintered samples of Ce1−xNdxO2−x / 2 (0.01  x  0.2) was investigated in air as a function of temperature between 150 and 600 °C using AC impedance spectroscopy. The individual contribution of the bulk and grain boundary conductivities has been discussed in detail. In the low temperature range (< 350 °C), the activation enthalpy for bulk conductivity exhibited a shallow minimum at 3 mol% Nd, with a value of 0.68 eV. The activation enthalpy also produced a shallow minimum at 5 mol% Nd in the high temperature range (> 350 °C), with a value of 0.56 eV. It was shown that Ce1−xNdxO2−x / 2 is an electrolyte that obeys the Meyer Neldel rule. The bulk conductivity data measured by others for the same system has also been recalculated and re-evaluated to facilitate easier comparison with our own data.  相似文献   

14.
The temperature dependence of elastic stiffnesses of K2Ba(NO2)4 is investigated in the range - 140 to + 160°C, in which two phase transitions have been reported. Marked anomalies appear at the lower transition, in contrast with continuous variations through the upper transition. Results are compared to those obtained near the upper transition by an ultrasonic method and they are qualitatively discussed.  相似文献   

15.
The effect of the electric field on the dielectric and acoustic properties of Pb[(Mg1/3Nb2/3)0.83Ti0.17]O3 single crystals was investigated as functions of temperature and the electric field strength. The dielectric constant and the acoustic mode behaviors exhibited typical relaxor behaviors when there was no bias field. The longitudinal acoustic mode showed splitting under a moderate electric field of 1 kV/cm applied along the [001] direction, indicating coexistence of macroscopic/mesoscopic ferroelectric states and relaxor states. Further increase in the electric field up to 2 kV/cm induced a clear ferroelectric phase transition, which became smeared out due to the proximity of the electric field to the critical point. The electric field-temperature phase diagram of Pb[(Mg1/3Nb2/3)0.83Ti0.17]O3 was suggested based on the observed field-induced changes in the dielectric and the acoustic properties.  相似文献   

16.
Fluorinated ceramics with initial composition (1−x)CaTiO3+xPbF2+xLiF were sintered at 950 °C. The X-ray diffraction (XRD) patterns of the samples showed the formation of a novel solid solution in the initial composition range 0⩽x⩽0.125. SEM observations were performed on fractured ceramics and DSC analyses were carried out from room temperature up to 600 °C. Three second-order phase transitions were detected for all the samples. Capacitors were prepared from the pre-sintered ceramics then dielectric measurements were performed as a function of temperature in the frequency range 102–4×107 Hz. The ε′r−T curves exhibit the profile of dielectrics for class I capacitors, however the values of tan δ are too high (tan δ⩾1%).  相似文献   

17.
The temperature dependence of the elongation per unit length for Pb(Mg1/3Nb2/3)O3 crystals unannealed after growth and mechanical treatment is investigated in the course of thermocycling. It is revealed that this dependence deviates from linear behavior at temperatures below 350°C. The observed deviation is characteristic of relaxors, is very small in the first cycle, increases with increasing number n of thermocycles, and reaches saturation at n≥3. In the first cycle, a narrow maximum of the acoustic emission activity is observed in the vicinity of 350°C. In the course of thermocycling, the intensity of this maximum decreases and becomes zero at n>3. For (1?x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals, the dependence of the temperature of this acoustic emission maximum on x exhibits a minimum. It is assumed that the phenomena observed are associated with the phase strain hardening due to local phase transitions occurring in compositionally ordered and polar nanoregions.  相似文献   

18.
The structural phase transitions and the electrical behaviour of the complex perovskite PbLu1/2Nb1/2O3 have been investigated using X-ray powder diffraction, dielectric constant measurements, differential scanning calorimetry and measurement of the polarisation as a function of applied electric field. The high-temperature paraelectric phase is highly ordered. A first-order paraelectric-antiferroelectric phase transition occurs at 270°C and an antiferroelectric-ferroelectric phase transition, characterised by dispersion in the curves of dielectric constant as a function of temperature, occurs at ≈ 30°C. The antiferroelectric phase is isostructural with the orthorhombic form of PbYb1/2Nb1/2O3. The low-temperature ferroelectric phase also has an orthorhombic crystal structure.  相似文献   

19.
The structural changes in (100 ? x)Na0.5Bi0.5TiO3xBaTiO3 (0 ≤ x ≤ 10) ceramics were investigated as a function of composition and temperature by X-ray diffraction and Raman spectroscopy. As Ba concentration increases, the structure changed from rhombohedral to tetragonal (x ≥ 6.5) across a morphotropic phase boundary like phase coexistence at x ~ 5.5, which is further evidenced by phonon anomalies observed in composition-dependent Raman spectra. On heating, the disappearance of peak splits in {111} (x ≤ 5) and {200} (x ≥ 6.5) Bragg peaks and the changes in their 2θ-positions indicated temperature-driven structural changes: ferroelectric to antiferroelectric (≈Td, depolarization temperature) at 220 °C and antiferroelectric to paraelectric (rhombohedral to tetragonal) at 320 °C. In addition, Raman spectral analysis suggested that at elevated temperatures, two tetragonal phases with slightly different space groups coexisted at x ≥ 6.5 and most of the phase transition temperatures shifted towards left with increasing x.  相似文献   

20.
Phase transformations in squaric acid (H2C4O4) have been investigated by thermogravimetry and differential scanning calorimetry with different heating rates β. The mass loss in TG apparently begins at onset temperatures Tdi=245±5 °C (β=5 °C min?1), 262±5 °C (β=10 °C min?1), and 275±5 °C (β=20 °C min?1). A polymorphic phase transition was recognized as a weak endothermic peak in DSC around 101 °C (Tc+). Further heating with β=10 °C min?1 in DSC revealed deviation of the baseline around 310 °C (Ti), and a large unusual exothermic peak around 355 °C (Tp), which are interpreted as an onset and a peak temperature of thermal decomposition, respectively. The activation energy of the thermal decomposition was obtained by employing relevant models. Thermal decomposition was recognized as a carbonization process, resulting in amorphous carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号