首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米碳管的电化学贮锂性能   总被引:5,自引:0,他引:5  
用透射电镜、高分辨透射电镜、X射线衍射和拉曼光谱表征了用催化热解法制备的纳米碳管的结构,研究了纳米碳管的电化学嵌脱锂性能。以纳米级铁粉为催化剂热解乙炔气得到的纳米碳管石墨化程度较低,结构中存在褶皱的石墨层、乱层石墨和微孔等缺陷,具有国交高的贮锂容量,初始容量为640mAh/g,但循环稳定性较差。而以纳米级氧化铁粉为催化剂热解乙烯得到的纳米碳管结构比较规则,循环稳定性较好,但贮锂容量较低,初始容量为282mAh/g。讨论了纳米碳管的结构对其温度特性和不同电流密度下的充放电容易的影响。  相似文献   

2.
The negative electrode development for a nickel-metal hydride battery (Ni–MH) prototype was performed with the following procedure: (1) the Lm0.95Ni3.8Co0.3Mn0.3Al0.4 (Lm=lanthanum rich mischmetal) intermetallic alloy was elaborated by melting the pure elements in an induction furnace inside a boron nitride crucible under an inert atmosphere, (2) the obtained alloy was crushed and sieved between 44 and 74 μm and mixed with teflonized carbon; (3) the compound was assembled together with a current collector and pressed in a cylindrical matrix. The obtained electrode presented a disc shape, with 11 mm diameter and approximately 1 mm thickness. The crystalline structure of the hydrogen storage alloy was examined using X-ray diffractometry. The measured hcp lattice volume was 1.78% larger than the precursor LaNi5 intermetallic alloy, increasing the available space for hydrogen movement. Energy dispersive spectroscopy (EDS) and scanning electronic microscopy (SEM) measurements were used before and after hydriding in order to verify the alloy sample homogeneity. The negative electrode was electrochemically tested by using a laboratory cell. It activates almost totally in its first cycle, which is an excellent characteristic from the commercial point of view. The maximum discharge capacity reached was 314.2 mA h/g in the 10th cycle.  相似文献   

3.
竹节状纳米碳纤维的制备及嵌锂性能研究   总被引:4,自引:0,他引:4  
以泡沫镍为催化剂 ,在 6 0 0和 70 0℃下 ,以CVD法热解乙炔气体制备大量的纳米碳纤维 .随着制备温度增加 ,纳米碳纤维直径变小 ,竹节状含量减少 ,d0 0 2 值减小 ,微晶片层平面Lc 和La 值增大 ,碳材料的可逆容量则下降 .分别用透射电镜、X射线衍射和拉曼光谱观察和测定了纳米碳纤维的形貌、微结构 ,发现在不同条件下生长的纳米碳纤维有不同的形貌和结构 .对纳米碳纤维的电化学嵌锂性能的研究表明 ,纳米碳纤维的结构对其电化学嵌锂容量和充放电循环寿命起重要影响 ,制备温度越低 ,纳米碳纤维的石墨化程度越差 ,可逆嵌锂容量相应要高一些  相似文献   

4.
周玮  吴国江 《低温与超导》2007,35(2):143-146,163
氢能是一种理想的能源载体,而经济有效的储氢手段是氢能实现规模应用急需解决的关键问题之一。碳纳米管在存储氢气上表现出来的独特性质,使其最有希望成为一种新的高效的储氢材料。从实验、理论研究两个方面总结了前人在碳纳米管储氢上的研究成果,并对碳纳米管储氢吸附方式,吸附量影响因素等方面做出分析。最后指出为实现碳纳米管储氢大规模应用仍需做的一些基础性研究工作。  相似文献   

5.
In situ formation of Al2O3-SiO2-SnO2 composite ceramic coating on Al-20%Sn alloy was successfully fabricated in aqueous Na2SiO3 electrolyte by microarc oxidation technology. The compositions, structure, mechanical and tribological properties of the composite coating were detailed studied by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, hardness tester and ball-on-disc friction tester. It is found that the species originating from the Al-20%Sn alloy substrate and the electrolyte solution both participate in reaction and contribute to the composition of the coating, which results in the generated coating firmly adherent to the substrate. The composite ceramic coating can greatly improve the microhardness and tribological property of Al-20%Sn alloy.  相似文献   

6.
7.
We report the electrochemical Li reactivity of the cubic NiP3 phase, a candidate for anode applications for Li-ion batteries. NiP3 reacts with nine lithium per formula unit leading to a first cycle reversible capacity of 1,475 mAh/g at an average potential of 0.9 V vs. Li+/Li°. Electrochemical measurements and complementary X-ray diffraction showed that NiP3 presents a conversion process competing with an insertion process. A good cycleability may only be obtained on a limited potential window, excluding the low-potential region. This paper was presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

8.
A simple, controlled and reproducible procedure is reported to obtain polymerized methylmethacrylate by embedding monodisperse Fe60Pt40 nanoparticles. The magnetic properties of the composite material can be controlled by the magnetic properties and the concentration (up to 0.3 wt%) of the starting nanoparticle dispersions. SQUID magnetometry measurements of FePt-doped methylmethacrylate polymers show superparamagnetic behavior at room temperature confirming the homogeneous particle distribution and the non-occurrence of agglomerates inside the polymeric matrix also observed by transmission electron microscopy. Even at the highest concentration the average particle distances are so large that no particle interactions play a role.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

10.
以纳米碳管和活性碳二元碳材料为催化层碳载体制备了氧扩散电极,采用稳态极化和电化学阻抗技术对其在碱性介质中氧还原反应的电催化活性进行了研究.结果表明,双载体电极比单载体纳米碳管、活性炭电极具有更高的电催化活性,纳米碳管和活性炭质量比为50∶50时双载体电极的催化活性最好;电极动力学参数测试表明,催化层中引入第二相纳米碳管载体提高了电极比表面积、电子导电性和氧还原反应速度;采用浸渍还原法在第二相纳米碳管载体中负载纳米级Pt催化剂,即使在低Pt负载量下(45.7μg/cm2)也明显改善了双载体电极的催化活性.阻抗测试表明,载Pt与未载Pt催化剂的双载体电极均受氧在薄液膜中的扩散控制.  相似文献   

11.
Ni-P alloy-carbon black (CB) composite films were fabricated by electroplating and their microstructures and properties were examined. The CB and phosphorus contents of the composite films were also investigated. The CB particles were found to be embedded in the Ni-P alloy matrix. The CB content in the deposits increased, reached a maximum value of 0.77 mass% with increasing CB concentration in the bath up to 10 g dm−3, and then decreased with a further increase in the CB concentration in the bath. Both before and after heat treatment, the composite films had higher hardnesses and lower friction coefficients than the Ni-P alloy films. Both before and after heat treatment, the friction coefficient of 0.77 mass% CB composite films was about half that of Ni-P alloy films without CB.  相似文献   

12.
报道了制备磁性Fe2O3纳米粒子的一种简单易行的方法.利用部分还原共沉淀法, 以Na2S2O4作为还原剂, 用FeCl3先制备出Fe2O3纳米微粒, 再在空气中直接煅烧, 成功地制备出粒径较均匀(约13 nm)的磁性Fe2O3微粒. 实验发现Na2S2O4在部分还原共沉淀法中起到了去氧剂兼还原剂的特殊作用.研究表明, 样品在室温下具有铁磁性, 其饱和磁化强度和矫顽力分别为70 emu/g和164 Oe; 产物具有好的电化学性质,在3.0?0.3 V(相对于金属锂)、0.2 mA/cm2时,样品的首次放电容量可达到933 mAh/g.同时还讨论了放电过程中金属锂与Fe2O3的反应机理.  相似文献   

13.
Nano-structured LiVPO4F/Ag composite cathode material has been successfully synthesized via a sol–gel route. The structural and physical properties, as well as the electrochemical performance of the material are compared with those of the pristine LiVPO4F. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal that Ag particles are uniformly dispersed on the surface of LiVPO4F without destroying the crystal structure of the bulk material. An analysis of the electrochemical measurements show that the Ag-modified LiVPO4F material exhibits high discharge capacity, good cycle performance (108.5 mAh g−1 after 50th cycles at 0.1 C, 93% of initial discharge capacity) and excellent rate behavior (81.8 mAh g−1 for initial discharge capacity at 5 C). The electrochemical impedance spectroscopy (EIS) results reveal that the adding of Ag decreases the charge-transfer resistance (Rct) of LiVPO4F cathode. This study demonstrates that Ag-coating is a promising way to improve the electrochemical performance of the pristine LiVPO4F for lithium-ion batteries cathode material.  相似文献   

14.
Presently, rechargeable Li-ion batteries, possessing highest energy densities among all batte-ries, are used in a major fraction of all portable electronic devices. However, for bestowing the Li-ion batteries suitable for such advanced applications, further improvements in the energy densities (Li-capacities) and in the cycle life are essential. In a broader sense, this can be achieved by replacing the presently used electrode materials by materials possessing higher Li-capacities and minimization of the degradation of such materials with electrochemical cycling. It has been realized that the major reason for degradation in battery performance in terms of capacity with cycling is the disintegration/fragmentation of the active electrode materials due to stresses generated during Li-intercalation/de-intercalation in every cycle. Such stresses arise from the reversible volume changes of the active electrode materials during Li-insertion and removal. In quest of higher energy densities, replacement of the presently used graphitic carbon by potentially higher capacity metallic anode materials (like Si, Sn, and Al) is likely to further accrue this stress related disintegration due to ~30 times higher volume changes experienced by such materials. It has also been recently realized that passivating layer formed on the surface of the electrodes also contributes toward the stress development. After briefly introducing the mechanistic aspects of Li-ion batteries, this article focuses on the reasons and consequences associated with stress developments in different electrode materials, highlighting the various strategies, in terms of designing new electrode com-positions or reducing the microstructural scale, that are being presently adopted to address the stress-related issues. Considering that experimental determination of such stresses is essential toward further progress in Li-ion battery research, this article introduces a recently reported technique developed for real-time measurement of such stresses. It finally concludes by raising some critical issues that need to be resolved through further research in this area.  相似文献   

15.
表面修饰纳米TiO2的贮氢合金电极的光充电行为   总被引:1,自引:0,他引:1  
采用水解-沉淀法制备了锐钛矿结构的纳米级TiO2,研究了表面修饰TiO2的贮氢合金电极的光充电、循环伏安及交流阻抗特性.结果表明,表面未修饰TiO2的贮氢合金电极在光照下电极电位基本无变化,而表面修饰TiO2的贮氢合金电极在光照下,电极电位向负方向偏移,可达-0.835V,表明在光照射条件下电极表面有氢原子形成.电化学阻抗谱的结果也表明,表面修饰电极在光照时表面有吸附氢存在,并存在氢原子向贮氢合金内部的扩散过程.扫描电镜观察表明,表面修饰TiO2的贮氢合金电极在光充电后产生的氢原子被贮氢合金吸收引起膨胀,导致表面出现大量微裂纹.  相似文献   

16.
The effect of the surface roughness on interfacial properties of carbon fibers (CFs) reinforced epoxy (EP) resin composite is studied. Aqueous ammonia was applied to modify the surfaces of CFs. The morphologies and chemical compositions of original CFs and treated CFs (a-CFs) were characterized by Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). Compared with the smooth surface of original CF, the surface of a-CF has bigger roughness; moreover, the roughness increases with the increase of the treating time. On the other hand, no obvious change in chemical composition takes place, indicating that the treating mechanism of CFs by aqueous ammonia is to physically change the morphologies rather than chemical compositions. In order to investigate the effect of surface roughness on the interfacial properties of CF/EP composites, the wettability and Interfacial Shear Strength (IFSS) were measured. Results show that with the increase of the roughness, the wettabilities of CFs against both water and ethylene glycol improves; in addition, the IFSS value of composites also increases. These attractive phenomena prove that the surface roughness of CFs can effectively overcome the poor interfacial adhesions between CFs and organic matrix, and thus make it possible to fabricate advanced composites based on CFs.  相似文献   

17.
Double layer coatings, with celsian-Y2SiO5 as inner layer and Y2Si2O7 as outer layer, were prepared by microwave sintering on the surface of carbon fiber reinforced silicon carbide matrix composite. Both celsian, Y2SiO5 and Y2Si2O7 were synthesized by in situ method using BAS glass, Y2O3 and SiO2 as staring materials. The sintering temperature was 1500 °C, and little damage was induced to the composite. The composition and micrograph of the fired coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The oxidation and thermal shock resistance of samples with doubled-layered coating were characterized at 1400 °C in air. After 150 min oxidation and thermal cycling between 1400 °C and room temperature for 15 times, the weight loss of double layer-coated sample was 1.22% and there were no cracks in the coating.  相似文献   

18.
The use of carbonaceous materials for hydrogen storage is not as simple as it may seem. Hydrogen atoms have different bonding energies and are incorporated into different types of these materials. Therefore, it is particularly important to distinguish between the surfacial atoms and those that are embedded in the bulk of the sample.SIMS spectrograph with periodical interruptions of the ion beam enables us to appreciate that at room temperature and in high vacuum, some outgassing of the surfacial hydrogen takes place.  相似文献   

19.
Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V8C7. The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.  相似文献   

20.
    
A novel Ni-B/TiC composite coating was synthesized by ultrasonic-assisted direct current electrodeposition. Ultrasonic technology was adopted to prevent the agglomeration of nanoparticle, improve the structure and corrosion resistance, using an ultrasonic bath at frequency 40 KHz and acoustic power 300 W. The influences of current density and deposition time on its structure and electrochemical behaviors were studied. Under ultrasonic dispersion, the composite coatings are smooth, compact with protrusion structure sparsely distributed on it. The average roughness (Sa) was about 13.6–26.1 nm. The crystallite size is 10–21 nm. The preferred orientation is Ni (1 1 1) texture. EIS results indicated that the corrosion resistance was greatly improved by ultrasonic-assisted method. The corrosion mechanism is consistent with one-time constant EEC model of Rs(CPEdlRct). With the increase of immersion time, the Rct of the composite coating often first increased and then decreased. Under ultrasonic, current density 2 A dm−2 and deposition time 20 min were the appropriate parameters for the optimal corrosion resistance and excellent long-term electrochemical stability in 3.5 wt% NaCl corrosive solution. This coating shows good application prospect for corrosion protection in aggressive environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号