首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 7 毫秒
1.
郑东宁 《物理学报》2021,(1):164-177
超导现象是一种宏观量子现象.磁通量子化和约瑟夫森效应是两个最能体现这种宏观量子特性的物理现象.超导量子干涉器件(superconducting quantum interference device,SQUID)是利用这两个特性而形成的超导器件.SQUID器件在磁信号灵敏探测方面具有广泛的应用.本文简要介绍低温超导和高温超导SQUID器件的相关背景和发展现状以及应用领域.  相似文献   

2.
《Physics letters. A》2020,384(27):126694
We consider the edge of a superconducting topological insulator with the impurity in the presence of the Zeeman field. We analytically prove that in the trivial phase two Andreev bound states (ABSs) arise with energies moving from the superconducting gap edges to zero forming two Majorana-like bound states, as the impurity strength varies from 0 to ±2. When the Zeeman field is locally perturbed, ABSs arise both in the trivial and topological phases, but in the topological phase ABSs with energy near the gap edges cannot transform into Majorana bound states and vice versa.  相似文献   

3.
Electron transport in Bi2Se3 topological insulator slabs is investigated in the thermal activation regime (>50 K) both in the absence (ballistic) and presence of weak and strong acoustic phonon scattering using the non-equilibrium Green function approach. Resistance of the slab is simulated as a function of temperature for a range of slab thicknesses and effective doping in order to gain a handle on how various factors interact and compete to determine the overall resistance of the slab. If the Bi2Se3 slab is biased at the Dirac point, resistance is found to display an insulating trend even for strong electron–phonon coupling strength. However, when the Fermi-level lies close to the bulk conduction band (heavy electron doping), phonon scattering can dominate and result in a metallic behavior, although the insulating trend is retained in the limit of ballistic transport. Depending on values of the operating parameters, the temperature dependence of the slab is found to exhibit a remarkably complex behavior, which ranges from insulating to metallic, and includes cases where the resistance exhibits a local maximum, much like the contradictory behaviors seen experimentally in various experiments.  相似文献   

4.
Topological superfluids and superconductors have been theoretically proposed, and it is now necessary to experimentally confirm their existence. Superfluid 3He should be the ideal test subject for topological theories because its bulk state is established to be that of a spin-triplet p-wave superfluid. Surface Andreev bound states of superfluid 3He were investigated by transverse acoustic impedance measurements and their linear dispersion was confirmed on a highly specular wall. The superfluid 3He B phase was found to be a topological superfluid showing bulk–edge correspondence and a surface Majorana cone was confirmed on the surface. Possible manifestations of the Majorana nature of the surface states are discussed.  相似文献   

5.
《Current Applied Physics》2019,19(8):917-923
Spin-momentum locked (SML) topological surface state (TSS) provides exotic properties for spintronics applications. The spin-polarized current, which emerges owing to the SML, can be directly detected by performing spin potentiometric measurement. We observed spin-polarized current using a bulk insulating topological insulator (TI), Bi1.5Sb0.5Te1.7Se1.3, and Co as the ferromagnetic spin probe. The spin voltage was probed with varying the bias current, temperature, and gate voltage. Moreover, we observed non-local spin-polarized current, which is regarded as a distinguishing property of TIs. The spin-polarization ratio of the non-local current was larger than that of the local current. These findings could reveal a more accurate approach to determine spin-polarization ratio at the TSS.  相似文献   

6.
We consider an asymmetric two-junction superconducting quantum interference device, whose junctions are assumed to be overdamped, and regard Sin Fourier series for their current-phase relations. We take into account the effects of thermal fluctuations by forming a two-dimensional Fokker-Planck equation for the distribution function. We judge a series expansion of first order with respect to the components of the reduced inductance for distribution function and obtain current-voltage relation. We consider the measured resistance of the superconducting nanowire quantum interference device with mesoscopic leads that Hopkins et al. reported in Hopkins et al. [D.S. Hopkins, D. Pekker, P.M. Goldbart, A. Bezryadin, Science 308 (2005) 1762] and analyzed in Pekker et al. [D. Pekker, A. Bezryadin, D.S. Hopkins, P.M. Goldbart, Phys. Rev. B 72 (2005) 104517], by defining loop inductance, and by considering appropriate relations for resistance of nanowires. In fact we extend Chesca formulation [B. Chesca, J. Low Temp. Phys. 112 (1998) 165] simultaneously in three aspects and give a unified theory for nanowire two-junction devices, low Tc and high Tc DC SQUIDs, in restricted conditions.  相似文献   

7.
We report the quantum transport studies on Bi2Se3 single crystal with bulk carrier concentration of ~1019 cm–3. The Bi2Se3 crystal exhibits metallic character, and at low temperatures, the field dependence of resistivity shows clear Shubnikov–de Haas (SdH) oscillations above 6 T. The analysis of these oscillations through Lifshitz–Kosevich theory reveals a non‐trivial π Berry phase coming from three‐dimensional (3D) Fermi surface, which is a strong signature of Dirac fermions with three‐dimensional dispersion. The large Dingle temperature and non zero slope of Williamson–Hall plot suggest the presence of enhanced local strain field in our system which possibly transforms the regions of topological insulator to 3D Dirac fermion metal state. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

8.
We report a nuclear magnetic resonance (NMR) study on H+ beam irradiated Bi2Te3 powdered single crystals. In this work, we demonstrate that the beam creates defects within its penetration range giving rise to delocalized charge carriers, thereby making further 125Te NMR Knight shift and line broadening. Upon increasing temperature, the NMR line narrowing manifests the activated motions of thermally excited charge carriers in the irradiated sample. In contrast, it reveals that in the unirradiated sample the free-charge carriers at the Fermi level dominantly contribute to the Knight shift. Our results show that the orbital contribution to the Knight shift in the bulk state of Bi2Te3 becomes predominant in the system with the higher density of defects, as evidenced by modified electronic structures induced by the beam irradiation.  相似文献   

9.
The magnetic states of multi-junction superconducting quantum interference device containing 2N identical conventional Josephson junctions are studied by means of a perturbation analysis of the non-linear first-order ordinary differential equations governing the dynamics of the Josephson junctions in these devices. In the zero-voltage state, persistent currents are calculated in terms of the externally applied magnetic flux Φex . The resulting d.c. susceptibility curves show that paramagnetic and diamagnetic states are present, depending on the value of Φex . The stability of these states is qualitatively studied by means of the effective potential notion for the system.  相似文献   

10.
高吉  杨涛  马平  戴远东 《物理学报》2010,59(7):5044-5048
介质谐振器是目前高温射频超导量子干涉器较常采用的一种高品质因数微波谐振器.它是由10 mm×10 mm×1 mm的SrTiO3(STO)标准衬底及覆盖在其上的YBa2Cu3O7-δ(YBCO)薄膜磁通聚焦器共同构成的.为探明磁通聚焦器构形对介质谐振器谐振频率的影响,本文采用Ansoft公司出品的HFSS高频结构仿真软件对磁通聚焦器构形不同的若干介质谐振器的谐振特性进行了仿真.结果表明:增大磁通聚焦器开  相似文献   

11.
In this work, we develop a theory of thermoelectric transport properties in two-dimensional semiconducting quantum well structures. Calculations are performed for n-type 0.1 wt.% CuBr-doped Bi2Se3/Bi2Te3/Bi2Se3 and p-type 3 wt.% Te-doped Sb2Te3/Bi2Te3/Sb2Te3 quantum well systems in the temperature range 50–600 K. It is found that reducing the well thickness has a pronounced effect on enhancing the thermoelectric figure of merit (ZT). For the n-type Bi2Se3/Bi2Te3/Bi2Se3 with 7 nm well width, the maximum value of ZT is estimated to be 0.97 at 350 K and for the p-type Sb2Te3/Bi2Te3/Sb2Te3 with well width 10 nm the highest value of the ZT is found to be 1.945 at 440 K. An explanation is provided for the resulting higher ZT value of the p-type system compared to the n-type system.  相似文献   

12.
Topological insulators have a bulk band gap like an ordinary insulator and conducting states on their edge or surface which are formed by spin–orbit coupling and protected by time-reversal symmetry. We report theoretical analyses of the electronic properties of three-dimensional topological insulator Bi2Se3 film on different energies. We choose five different energies (–123, –75, 0, 180, 350 meV) around the Dirac cone (–113 meV). When energy is close to the Dirac cone, the properties of wave function match the topological insulator’s hallmark perfectly. When energy is far way from the Dirac cone, the hallmark of topological insulator is broken and the helical states disappear. The electronic properties of helical states are dug out from the calculation results. The spin-momentum locking of the helical states are confirmed. A 3-fold symmetry of the helical states in Brillouin zone is also revealed. The penetration depth of the helical states is two quintuple layers which can be identified from layer projection. The charge contribution on each quintuple layer depends on the energy, and has completely different behavior along K and M direction in Brillouin zone. From orbital projection, we can find that the maximum charge contribution of the helical states is pz orbit and the charge contribution on pyand px orbits have 2-fold symmetry.  相似文献   

13.
MgO衬底上的YBa2Cu3O7-δ(YBCO)台阶边沿型约瑟夫森结(台阶结)在高灵敏度高温超导量子干涉器(superconducting quantum interference device,SQUID)等超导器件研制方面具有重要的应用价值和前景.本文对此类YBCO台阶结的制备和特性进行了研究.首先利用离子束刻蚀技术和两步刻蚀法在MgO(100)衬底上制备陡度合适、边沿整齐的台阶,然后利用脉冲激光沉积法在衬底上生长YBCO超导薄膜,进而利用紫外光刻制备出YBCO台阶结.在结样品的电阻-温度转变曲线中,观测到低于超导转变温度时的电阻拖尾现象,与约瑟夫森结的热激活相位滑移理论一致.伏安特性曲线测量表明结的行为符合电阻分路结模型,在超导转变温度TC附近结的约瑟夫森临界电流密度TC随温度T呈现出(TC-T)^2的变化规律,77 K时JC值为1.4×10^5 A/cm^2.利用制备的台阶结,初步制备了YBCO射频高温超导SQUID,器件测试观察到良好的三角波电压调制曲线,温度77 K、频率1 kHz时的磁通噪声为250μΦ0/Hz^1/2.本文结果为进一步利用MgO衬底YBCO台阶结研制高性能的高温超导SQUID等超导器件奠定了基础.  相似文献   

14.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号