首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-doped titania thin films were prepared by anodic oxidation of titanium sheets and subsequent heat treatment in the presence of urea pyrolysis products at 400 °C. The resulting films are modified predominantly at the surface. They exhibited a significant photocurrent response upon visible light irradiation inducing an incident photon-to-current efficiency of 1.5% at 400 nm. The flatband potential was anodically shifted by 0.2 V as compared to the unmodified film. Photocurrent transients revealed that nitrogen-centered intra-bandgap states, responsible for visible light response, induce also enhanced recombination as indicated by a cathodic “overshoot” after turning off the light. This recombination can be inhibited by the presence of iodide.  相似文献   

2.
Transparent aramid based titania hybrid films have been prepared by the sol–gel process. A mixture of m- and p-phenylenediamines was reacted with terephthaloyl chloride forming aromatic polyamide chains in dimethylacetamide solvent. The titania network was generated insitu in this matrix by the hydrolysis and condensation of the various amounts of tetraethylorthotitanate. Hybrid films with concentrations of titania varying from 2.5 to 12.5 wt% were prepared; the higher percentages of titania in the organic matrix showed a tendency towards phase separation. These films were tested for their thermo-mechanical properties. To achieve a further improvement in properties of the matrix, the aramid chain was functionalized and the inorganic network was chemically bonded using isocyanatopropyltrimethoxysilane. The bonded hybrids showed a narrower distribution of titania particles and these were distributed as a co-continuous phase. The glass transition temperature (Tg) of the hybrid films measured through dynamic mechanical analysis showed a relatively higher increase with inclusion of titania in the covalently bonded hybrids. The maximum value of Tg noted in the chemically bonded composites with 12.5 wt% titania was 361 °C and the storage modulus value was 5.214 GPa at 100 °C, showing an increase of 62 % over the pure polymer. The hybrid films with titania showed an improved UV-stability as compared to the pure polymer.  相似文献   

3.
New hybrid semi‐interpenetrating proton‐conducting membranes were obtained using sulfonated polystyrene (SPS) and inorganic–organic polysiloxane phases with the aim of improving the mechanical and thermal characteristics of the pristine polymer and to study the effects of crosslinking in the latter phase in several of their properties, mainly proton conductivity. Siloxane phases were prepared using poly(dimethylsiloxane) (PDMS) and PDMS with tetraethoxysilane (TEOS) or phenyltrimethoxysilane (PTMS) as crosslinking agents. To study the crosslinking effect, membranes were prepared with different TEOS:PDMS and PTMS:PDMS mole ratios. The films obtained were characterized by FTIR, 29Si‐HPDEC MAS‐NMR, 13C‐CP‐MAS NMR, elemental and thermal analyses. Certain properties, such as water uptake (WU), ion exchange capacity (IEC) and the state of the water, were determined. The proton conductivity was measured at different temperatures (30°C and 80°C) and relative humidities (50–95%). The water content of the hybrid membranes declined significantly, compared with the SPS membranes, depending on the nature and amount of siloxane phase added. Nonetheless, the conductivity values remained relatively high (>100 mS cm?1 at 80°C and 95% RH) when compared to Nafion®117 presumably because of the formation of well developed proton channels, which makes them potentially promising as proton exchange membranes for fuel cells. These membranes proved to be thermally stable up to 350°C. Scanning electron microscopy (SEM) and scanning electrochemical microscopy (SECM) were used to characterize the hybrid membranes microstructures; the latter provided contrast for the conductive domains. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Hybrid materials were prepared by sol–gel method using Tetraethylortosilicate and Polydimethylsiloxane silanol terminated with the addition of small contents of Zirconium Propoxide ≤5 wt%. The thermal stability of the prepared samples was studied by Infra-red spectroscopy, 29Si Nuclear Magnetic Resonance, Thermal Analysis and Scanning Electron Microscopy. All samples were monolithic after drying at 120 °C. After heat treatment at 400 °C the samples prepared with 0 wt% in Zirconium Propoxide present high porosity. It was found that the content in Zirconium Propoxide is directly related with the thermal stability of the hybrid materials prepared in this study.  相似文献   

5.
The dehydroxylation and rehydroxylation properties of titania (Degussa P-25) were investigated. FTIR and TPD-MS data indicate that hydroxyl groups are not completely removed at 500 °C in vacuo, and rehydration/rehydroxylation occur under helium (water content < 1 ppm) flow at room temperature. In addition, repeating dehydroxylation/rehydroxylation treatments for ten times does not significantly modify the dehydroxylation/rehydroxylation property of titania surface. Desorption of hydrogen from titania was observed at 535 °C after titania was reduced above 400 °C. The maximum surface density of hydrogen was determined to be 0.75 H atom/nm2. TPD data show four types of hydrogen on 3% titania supported cobalt catalysts: hydrogen adsorbed on cobalt metal (desorption temperature around 100 °C), reverse spillover hydro gen (150-250 °C), hydrogen from H-TiO2-x- Co interacting species (-330 °C), and recombined hydrogen from Ti3+-H on titania (-535 °C). The absence of hydrogen desorption peak at 535 °C for titania supported cobalt reduced above 400 °C can be explained in terms of the migration of H-TiO2-x moieties onto cobalt metal surface during reduction. Removal of hydroxyl groups by thermal treatment before reduction enhanced the amount of hydrogen desorption from normal cobalt surface. This indicates that the hydroxyl groups play a role in the surface migration of H-Ti2-x.  相似文献   

6.
Hydroxypropylcellulose (HPC)–titania hybrid thin films were prepared by sol–gel method where titanium tetraisopropoxide Ti(OC3H7 i )4 was hydrolyzed under acidic conditions in the presence of HPC, followed by dip-coating and drying at 120 °C for 24 h. The viscosity average molecular weight of HPC was 55,000–70,000 or 110,000–150,000, and the TiO2/(HPC + TiO2) mass ratio ranged from 0 to 1, which was calculated on the assumption that all Ti(OC3H7 i )4 is converted into TiO2. The films were 0.35–1.0 μm thick, transparent in visible region and opaque in ultraviolet (UV) region, where the optical absorption coefficient in UV region increased with increasing titania content. The refractive index increased with increasing titania content, ranging from 1.6 to 1.8 for the hybrid thin films. The pencil hardness increased from 6B to 5H, the durability in hot water significantly increased and the contact angle of water on films increased from 35° to 89° with increasing titania content. Crack-free films could be deposited on organic polymer substrates irrespective of titania or HPC contents, where cracking did not occur at higher HPC contents even when the substrate was bent.  相似文献   

7.
Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one‐step approach. The mechanism of this process was revealed by insertion of Eu3+ cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m2g?1 and a specific capacity of 167 mA h g?1 at a C/3 rate, making it attractive as an anode electrode for Li‐ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m2 g?1 with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non‐porous rutile monolith, as commonly observed with nanoscale titania.  相似文献   

8.
A new class of polyethers has been prepared by the Mitsunobu coupling of poly(4-vinyl phenol), P4VP, with low molecular weight poly(ethylene glycol)methyl ether. These comb-like polymers, having ca. 20–30% residual phenols, were characterized by IR, DSC, and TGA. Results of thermal analysis on the polymers suggest thermal stability to at least 300°C and a glass transition temperature in the range ?30 to ?40°C. Complexes with LiPF6 gave conductivities of ca. 1 × 10?5 S/cm at room temperature. The polymers were blended with plasticized poly(vinylidene fluoride) (PVDF) to prepare porous films and subsequently infiltrated with lithium salts and ethylene and ethyl methyl carbonate. Ionic conductivities of these hybrid films were measured from ?20°C to 40°C. Conductivities as high as 2.4 × 10?3 S/cm are observed at room temperature. The electrochemical stability of hybrid materials was studied by cyclic voltammetry.  相似文献   

9.
We present for the first time the elaboration via sol gel route of cerium (1 mol%) doped SrHfO3 powders and films. The sol is elaborated using hafnium and strontium ethoxides as precursors and cerium nitrate as dopant. The structure of powders and films are characterized by convergent methods: Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, Raman spectroscopy and optical measurements conducted by the prism coupling method. The powder crystallises from amorphous to pure SrHfO3 orthorhombic perovskite phase after a 800°C heat treatment. Nevertheless HfO2 monoclinic phase coexists with orthorhombic perovskite phase after a 1000°C heat treatment. The film is amorphous for annealing temperatures lower than 700°C and presents good waveguiding performances. The film heat-treated at 700°C exhibits a refractive index of 1.810 ± 0.001 (λ = 543.5 nm) for a thickness around 375 nm. The attenuation coefficient obtained on the 400°C heat-treated film is α = 4.0 ± 0.5 dB/cm (λ = 632.8 nm). The film starts to crystallize at 750°C into the SrHfO3 orthorhombic phase but HfO2 monoclinic phase is also detected after a heat treatment at 1000°C. The potentiality of sol gel Ce3+:SrHfO3 powders and films for scintillation applications are investigated.  相似文献   

10.
Manganese ferrite nanopowder was prepared by a new solvothermal method, using 1,2 propanediol as solvent and KOH as precipitant. The as-synthesized powder, by solvothermal treatment in autoclave at 195 °C, for 12 h, consisted of fine manganese ferrite nanoparticles. The further thermal treatment of the initial manganese ferrite powder to higher temperature resulted in manganese ferrite decomposition due to Mn(II) oxidation to Mn(III), as observed by X-ray diffraction. FT-IR spectroscopy has evidenced that the oxidation takes place even at 400 °C. The oxidation of Mn(II) to Mn(III) was studied by TG/DSC simultaneous thermal analysis. It was shown that Mn(II) oxidation takes place in a very small extent up to 400 °C. The main oxidation step occurs around 600 °C, when a clear mass gain is registered on TG curve, associated with a sharp exothermic effect on DSC curve. The exothermic effect is smaller in case of the powder annealed at 400 °C, confirming the superficial oxidation of Mn(II) up to 400 °C. In order to avoid Mn(II) oxidation, the powder obtained at 400 °C was further annealed at 800 °C in argon atmosphere, without degassing, when manganese ferrite MnFe2O4 was obtained as major crystalline phase (69 %). All manganese ferrite powders showed a superparamagnetic behavior, with maximum magnetization of 51 emu g?1 in case of the as-synthesized powder, characteristic of magnetic ferrite nanopowders.  相似文献   

11.
High‐molecular‐weight polybenzoxazine prepolymers containing polydimethylsiloane unit in the main‐chain have been synthesized from α,ω‐bis(aminopropyl)polydimethylsiloxane (PDMS) (molecular weight = 248, 850, and 1622) and bisphenol‐A with formaldehyde. Moreover, another type of prepolymers was prepared using methylenedianiline (MDA) as codiamine with PDMS. The weight average molecular weight of the obtained prepolymers was estimated from size exclusion chromatography to be in the range of 8000–11,000. The chemical structures of the prepolymers were investigated by 1H NMR and IR analyses. The prepolymers gave transparent free standing films by casting their dioxane solution. The prepolymer films after thermally cured up to 240 °C gave brown colored transparent and flexible polybenzoxazine films. Tensile test of the films revealed that the elongation at break increased with increasing the molecular weight of PDMS unit. Dynamic mechanical analysis of the thermosets showed that the Tgs were as high as 238–270 °C. The thermosets also revealed high thermal stability as evidenced by the 5% weight loss temperatures in the range of 324–384 °C from thermogravimetic analysis. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
High-performance silicalite-1 membranes were successfully synthesized on novel porous silica tubes by two-step in-situ hydrothermal synthesis.The flux and separation factor towards ethanol/water mix- ture at 60℃were 0.56 kg/(m2·h)and 84,respectively.The as-synthesized silicalite-1 membranes were characterized by scanning electron microscopy(SEM).The influence of different synthesis conditions on the separation performance of the silicalite-1 membranes was investigated.It was found that the average flux of silicalite-1 membranes was improved by about 26?ter filling the silica tubes with mixed solution containing glycerol and water.After calcinating at 400℃for 5 h repeatedly,membrane synthesized on silica tube still showed high pervaporation performance towards ethanol/water mixture even at a calcination rate of 4℃/min,which suggested that silica support was more suitable for pre- paring high-performance silicalite-1 membranes.  相似文献   

13.
Essentially fully dense titania thin films were spin coated on fused quartz substrates under identical conditions and subjected to annealing over the range 750°–900°C. The films were of a consistent ~400 nm thickness. The anatase → rutile phase transformation temperature was between 750°C and 800°C, with first-order kinetics; annealing at 900°C yielded single-phase rutile. Silicon contamination from the fused quartz substrate was considered to be critical since it suppressed both titania grain growth (maintaining constant grain size) and the phase transformation (occurring at an unusually high temperature); its presence also was considered to be responsible for the formation of lattice defects, which decreased the transmittances and the band gaps.  相似文献   

14.
Alumina–titania mixed oxide nanocatalysts with molar ratios = 1:0.5, 1:1, 1:2, 1:5 have been synthesized by adopting a hybrid sol–gel route using boehmite sol as the precursor for alumina and titanium isopropoxide as the precursor for titania. The thermal properties, XRD phase analysis, specific surface area, adsorption isotherms and pore size details along with temperature programmed desorption of ammonia are presented. A specific surface area as high as 291 m2/g is observed for 1:5 Al2O3/TiO2 composition calcined at 400 °C, but the same composition when calcined at 1,000 °C, resulted in a surface area of 4 m2/g, while 1:0.5 composition shows a specific surface area of 41 m2/g at 1,000 °C. Temperature programmed desorption (of ammonia) results show more acidic nature for the titania rich mixed oxide compositions. Transmission electron microscopy of low and high titania content samples calcined at 400 °C, shows homogeneous distribution of phases in the nano range. In the mixed oxide, the particle size ranges between 10–20 nm depending on titania content. The detailed porosity data analysis contributes very much in designing alumina–titania mixed oxide nanocatalysts.  相似文献   

15.
Monolithic titania materials with macro-mesoporosity bimodal texture have been prepared through a template-free sol–gel approach, based on the reaction of hydrolysis and polycondensation of titanium isopropoxide promoted by the slow released water from esterification between acetic acid and methanol under a strong acidic condition. With the coarsening of the titania oligomers, phase separation and sol–gel transition processes take place so as to form a homogeneous gel system that will change into a monolith after aging, drying and heat treatment. The synthesized titania monolith possesses a specific surface area of 77 m2 g−1 (calcined at 350 °C), an anatase with partly rutile crystallite structure and great mechanical strength. The synthesis method applied here is simple and easy to implement as no extra chemical modifier such as poly(ethylene oxide) (PEO) and formamide is needed to control the process. The properties of biomodal porous structure, satisfactory surface area and high mechanical strength will enable the monolith to be served as a chromatography column to separate phosphorus organo-compounds.  相似文献   

16.
In this study, we demonstrated a highly sensitive electrochemical sensor for the determination of glucose in alkaline aqueous solution by using nickel oxide single-walled carbon nanotube hybrid nanobelts (NiO–SWCNTs) modified glassy carbon electrode (GCE). The hybrid nanobelts were prepared by the deposition of SWCNTs onto the Ni(SO4)0.3(OH)1.4 nanobelt surface, followed by heat treatment at different temperatures ranging from 400 °C to 600 °C. The NiO–SWCNTs hybrid nanobelts modified electrode prepared at 500 °C displays enhanced electrocatalytic activity towards glucose oxidation, revealing a synergistic effect between the NiO and the deposited SWCNTs. The as-fabricated nonenzymatic glucose sensor exhibits excellent glucose sensitivity (2,980 μA cm?2 mM?1), lower detection limit (0.056 μM, signal/noise [S/N] ratio?=?3), and wider linear range (0.5–1,300 μM). Moreover, the sensor has been successfully used for the assay of glucose in serum samples with good recovery, ranging from 96.4 % to 102.4 %.  相似文献   

17.
To present a new method of fabricating the large areas of crack-free porous silica films by introduction of composite polydimethylsiloxanes (PDMS). We employed two kinds of side-chain polyether modified by PDMS terminated with Si–CH3 and Si–OC2H5 groups in preparation of large areas of porous silica films. The porous film presents a mesopore structure with a porosity of 58.0 %, which is fit for thermal-isolating layer applied in pyroelectric devices. The stress evolution on gel-to-ceramic film conversion has been investigated. The results reveal that a slow decrease in tensile stress before 250 °C and a slow increase after 250 °C can be observed, which is closely related to the alteration of chemical composition in the heat-treatment process. It is clear that the stress has been restrained with the addition of composite PDMS.  相似文献   

18.
Proton conductive inorganic-organic hybrid films, which show high proton conductivity at temperatures higher than 100°C with low humidification, have been prepared from epoxycyclohexylethyltrimethoxysilane (EHTMS), 3-glycidoxypropyltrimethoxysilane, and orthophosphoric acid by the sol-gel method. Self-supporting, flexible, and brownish transparent films with a thickness ranging from 150 to 300 μm were obtained. Differential thermal analyses and thermogravimetric measurements revealed that the films were stable up to about 200°C. Ionic conductivity of the films increased with an increase in the content of phosphoric acid in the films. The films with a molar ratio of P/Si = 1.75 retained a high conductivity of about 6 × 10?4 S cm?1 even after holding for 150 h under 0.7% relative humidity at 130°C. The conductivity of the films increased with an increase in the relative humidity and was about 1 × 10?2 S cm?1 under 20% relative humidity at 130°C.  相似文献   

19.
Multi-layer PDMS/PVDF composite membrane with an alternative PDMS/PVDF/non-woven-fiber/PVDF/PDMS configuration was prepared in this paper. The porous PVDF substrate was obtained by casting PVDF solution on both sides of non-woven fiber with immersion precipitation phase inversion method. Polydimethylsiloxane (PDMS) was then cured by phenyltrimethoxylsilane (PTMOS) and coated onto the surface of porous PVDF substrate one layer by the other to obtain multi-layer PDMS/PVDF composite membrane. The multi-layer composite membrane was used for ethanol recovery from aqueous solution by pervaporation, and exhibited enhanced separation performance compared with one side PDMS/PVDF composite membranes, especially in the low ethanol concentration range. The maximum separation factor of multi-layer PDMS/PVDF composite membrane was obtained at 60 °C, and the total flux increased exponentially along with the increase of temperature. The composite membrane gave the best pervaporation performance with a separation factor of 15, permeation rate of 450 g/m2h with a 5 wt.% ethanol concentration at 60 °C.  相似文献   

20.
Polyhedral oligomeric silsesquioxane (POSS) polymers were synthesized by the dehydrogenative condensation of (HSiO3/2)8 with water in the presence of diethylhydroxylamine followed by trimethylsilylation. Coating films were prepared by spin‐coating of the coating solution prepared by the dehydrogenative condensation of POSS. The hardness of the coating films was evaluated using a pencil‐hardness test and was found to increase up to 8H with increases in the curing temperature. Free‐standing film and silica gel powder were prepared by aging the coating solution at room temperature. The silica gel powder was subjected to heat treatment under air atmosphere to show a specific surface area of 440 m2 g−1 at 100 °C, which showed a maximum at 400 °C as 550 m2 g−1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号