首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chorismate mutase is a key model system in the development of theories of enzyme catalysis. To analyze the physical nature of catalytic interactions within the enzyme active site and to estimate the stabilization of the transition state (TS) relative to the substrate (differential transition state stabilization, DTSS), we have carried out nonempirical variation-perturbation analysis of the electrostatic, exchange, delocalization, and correlation interactions of the enzyme-bound substrate and transition-state structures derived from ab initio QM/MM modeling of Bacillus subtilis chorismate mutase. Significant TS stabilization by approximately -23 kcal/mol [MP2/6-31G(d)] relative to the bound substrate is in agreement with that of previous QM/MM modeling and contrasts with suggestions that catalysis by this enzyme arises purely from conformational selection effects. The most important contributions to DTSS come from the residues, Arg90, Arg7, Glu78, a crystallographic water molecule, Arg116, and Arg63, and are dominated by electrostatic effects. Analysis of the differential electrostatic potential of the TS and substrate allows calculation of the catalytic field, predicting the optimal location of charged groups to achieve maximal DTSS. Comparison with the active site of the enzyme from those of several species shows that the positions of charged active site residues correspond closely to the optimal catalytic field, showing that the enzyme has evolved specifically to stabilize the TS relative to the substrate.  相似文献   

2.
The reaction mechanism of the dinuclear zinc enzyme dihydroorotase was investigated by using hybrid density functional theory. This enzyme catalyzes the reversible interconversion of dihydroorotate and carbamoyl aspartate. Two reaction mechanisms in which the important active site residue Asp250 was either protonated or unprotonated were considered. The calculations establish that Asp250 must be unprotonated for the reaction to take place. The bridging hydroxide is shown to be capable of performing nucleophilic attack on the substrate from its bridging position and the role of Zn(beta) is argued to be the stabilization of the tetrahedral intermediate and the transition state leading to it, thereby lowering the barrier for the nucleophilic attack. It is furthermore concluded that the rate-limiting step is the protonation of the amide nitrogen by Asp250 coupled with C-N bond cleavage, which is consistent with previous experimental findings from isotope labeling studies.  相似文献   

3.
The catalytic reaction of chorismate mutase (CM) has been the subject of major current attention. Nevertheless, the origin of the catalytic power of CM remains an open question. In particular, it has not been clear whether the enzyme works by providing electrostatic transition state stabilization (TSS), by applying steric strain, or by populating near attack conformation (NAC). The present work explores this issue by a systematic quantitative analysis. The overall catalytic effect is reproduced by the empirical valence bond (EVB) method. In addition, the binding free energy of the ground state and the transition state is evaluated, demonstrating that the enzyme works by TSS. Furthermore, the evaluation of the electrostatic contribution to the reduction of the activation energy establishes that the TSS results from electrostatic effects. It is also found that the apparent NAC effect is not the reason for the catalytic effect but the result of the TSS. It is concluded that in CM as in other enzymes the key catalytic effect is electrostatic TSS. However, since the charge distribution of the transition state and the reactant state is similar, the stabilization of the transition state leads to reduction in the distance between the reacting atoms in the reactant state.  相似文献   

4.
The rate enhancement provided by the chorismate mutase (CM) enzyme for the Claisen rearrangement of chorismate to prephenate has been investigated by application of the concept of near attack conformations (NACs). Using a combined QM/MM Monte Carlo/free-energy perturbation (MC/FEP) method, 82% and 100% of chorismate conformers were found to be NAC structures in water and in the CM active site, respectively. Consequently, the conversion of non-NACs to NACs does not contribute to the free energy of activation from preorganization of the substrate into NACs. The FEP calculations yielded differences in free energies of activation that well reproduce the experimental data. Additional calculations indicate that the rate enhancement by CM over the aqueous phase results primarily from conformational compression of NACs by the enzyme and that this process is enthalpically controlled. This suggests that preferential stabilization of the transition state in the enzyme environment relative to water plays a secondary role in the catalysis by CM.  相似文献   

5.
Several mechanisms have been considered as principal factors in enhancing the catalytic reaction velocity of enzymes: approximation, covalent catalysis, general acid-based catalysis, and strain. Among them, the strain on the substrate and/or the enzyme is often found to be brought about on association of the substrate and the enzyme. If this strain is released in the transition state, it contributes to enhancing the k(cat) value, although it does not change the k(cat)/K(m) value. In aspartate aminotransferase, however, we found by analysis of the Schiff base pK(a) values that the unliganded enzyme carries a strain in the protonated Schiff base formed between the coenzyme pyridoxal phosphate and a lysine residue. This bond is cleaved in most of the reaction intermediates, including the transition state. As a result, the activation energy between the free enzyme plus substrate and the transition state is decreased by 16 kJ/mol, equal to the value of the strain energy. The net effect of this strain is enhancement (10(3)-fold) of the catalytic efficiency in terms of k(cat)/K(m), the more important indicator of the catalytic efficiency at low concentration of the substrate.  相似文献   

6.
Many enzymes catalyze reactions with multiple chemical steps, requiring the stabilization of multiple transition states during catalysis. Such enzymes must strike a balance between the conformational reorganization required to stabilize multiple transition states of a reaction and the confines of a preorganized active site in the polypeptide tertiary structure. Here we investigate the compromise between structural reorganization during the catalytic process and preorganization of the active site for a multistep enzyme-catalyzed reaction, the hydrolysis of esters by the Ser-His-Asp/Glu catalytic triad. Quantum mechanical transition states were used to generate ensembles of geometries that can catalyze each individual step in the mechanism. These geometries are compared to each other by superpositions of catalytic atoms to find "consensus" geometries that can catalyze all steps with minimal rearrangement. These consensus geometries are found to be excellent matches for the natural active site. Preorganization is therefore found to be the major defining characteristic of the active site, and reorganizational motions often proposed to promote catalysis have been minimized. The variability of enzyme active sites observed by X-ray crystallography was also investigated empirically. A catalog of geometrical parameters relating active site residues to each other and to bound inhibitors was collected from a set of crystal structures. The crystal-structure-derived values were then compared to the ranges found in quantum mechanically optimized structures along the entire reaction coordinate. The empirical ranges are found to encompass the theoretical ranges when thermal fluctuations are taken into account. Therefore, the active sites are preorganized to a geometry that can be objectively and quantitatively defined as minimizing conformational reorganization while maintaining optimal transition state stabilization for every step during catalysis. The results provide a useful guiding principle for de novo design of enzymes with multistep mechanisms.  相似文献   

7.
In this paper a deeper insight into the chorismate-to prephenate-rearrangement, catalyzed by Bacillus subtilis chorismate mutase, is provided by means of a combination of statistical quantum mechanics/molecular mechanics simulation methods and hybrid potential energy surface exploration techniques. The main aim of this work is to present an estimation of the preorganization and reorganization terms of the enzyme catalytic rate enhancement. To analyze the first of these, we have studied different conformational equilibria of chorismate in aqueous solution and in the enzyme active site. Our conclusion is that chorismate mutase preferentially binds the reactive conformer of the substrate--that presenting a structure similar to the transition state of the reaction to be catalyzed--with shorter distances between the carbon atoms to be bonded and more diaxial character. With respect to the reorganization effect, an energy decomposition analysis of the potential energies of the reactive reactant and of the reaction transition state in aqueous solution and in the enzyme shows that the enzyme structure is better adapted to the transition structure. This means not only a more negative electrostatic interaction energy with the transition state but also a low enzyme deformation contribution to the energy barrier. Our calculations reveal that the structure of the enzyme is responsible for stabilizing the transition state structure of the reaction, with concomitant selection of the reactive form of the reactants. This is, the same enzymatic pattern that stabilizes the transition structure also promotes those reactant structures closer to the transition structure (i.e., the reactive reactants). In fact, both reorganization and preorganization effects have to be considered as the two faces of the same coin, having a common origin in the effect of the enzyme structure on the energy surface of the substrate.  相似文献   

8.
In this work we present a detailed analysis of the activation free energies and averaged interactions for the Claisen and Cope rearrangements of chorismate and carbachorismate catalyzed by Bacillus subtilischorismate mutase (BsCM) using quantum mechanics/molecular mechanics (QM/MM) simulation methods. In gas phase, both reactions are described as concerted processes, with the activation free energy for carbachorismate being about 10-15 kcal mol(-)(1) larger than for chorismate, at the AM1 and B3LYP/6-31G levels. Aqueous solution and BsCM active site environments reduce the free energy barriers for both reactions, due to the fact that in these media the two carboxylate groups can be approached more easily than in the gas phase. The enzyme specifically reduces the activation free energy of the Claisen rearrangement about 3 kcal mol(-)(1) more than that for the Cope reaction. This result is due to a larger transition state stabilization associated to the formation of a hydrogen bond between Arg90 and the ether oxygen. When this oxygen atom is changed by a methylene group, the interaction is lost and Arg90 moves inside the active site establishing stronger interactions with one of the carboxylate groups. This fact yields a more intense rearrangement of the substrate structure. Comparing two reactions in the same enzyme, we have been able to obtain conclusions about the relative magnitude of the substrate preorganization and transition state stabilization effects. Transition state stabilization seems to be the dominant effect in this case.  相似文献   

9.
The substrate mechanism of class I ribonucleotide reductase has been revisited using the hybrid density functional B3LYP method. The molecular model used is based on the X-ray structure and includes all the residues of the R1 subunit commonly considered in the RNR substrate conversion scheme: Cys439 initiating the reaction as a thiyl radical, the redox-active cysteines Cys225 and Cys462, and the catalytically important Glu441 and Asn437. In contrast to previous theoretical studies of the overall mechanism, Glu441 is added as an anion. All relevant transition states have been optimized, including one where an electron is transferred 8 A from the disulfide to the substrate simultaneously with a proton transfer from Glu441. The calculated barrier for this step is 19.1 kcal/mol, which can be compared to the rate-limiting barrier indicated by experiments of about 17 kcal/mol. Even though the calculated barrier is somewhat higher than the experimental limit, the discrepancy is within the normal error bounds of B3LYP. The suggestion from the present modeling study is thus that a protonated Glu441 does not need to be present at the active site from the beginning of the catalytic cycle. However, the previously suggested mechanism with an initial protonation of Glu441 cannot be ruled out, because even with the cost added for protonation of Glu441 with a typical pK(a) of 4, the barrier for that mechanism is lower than the one obtained for the present mechanism. The results are compared to experimental results and suggestions.  相似文献   

10.
Based on hybrid QM/MM molecular dynamics simulation and density functional theoretical (DFT) calculations, we investigate the mechanistic and energetic features of the catalytic action of dizinc metallo-beta-lactamase CcrA from Bacteroides fragilis. The 200 ps QM/MM simulation of the CcrA enzyme in complex with nitrocefin shows that the substrate beta-lactam moiety is directed toward the active site dizinc center through the interactions of aminocarbonyl and carboxylate groups with the two active site zinc ions and the two conserved residues, Lys167 and Asn176. From the determination of the potential energy profile of a relevant enzymatic reaction model, it is found that the nucleophilic displacement reaction step proceeds with a low-barrier height, leading to the formation of an energetically favored reaction intermediate. The results also show that the high catalytic activity of the CcrA enzyme stems from a simultaneous operation of three catalytic components: activation of the bridging hydroxide nucleophile by zinc-coordinated Asp86; polarization of the substrate aminocarbonyl group by the first zinc ion; stabilization of the negative charge developed on the departing amide nitrogen by the second zinc ion. Consistent with the previous experimental finding that the proton-transfer reaction step is rate-limiting, the activation energy of the second step is found to be 1.6 kcal/mol higher than that of the first step. Finally, through an examination of the structural and energetic features of binding of a thiazolidinecarboxylic acid inhibitor to the active site dizinc center, a two-step inhibition mechanism involving a protonation-induced ligand exchange reaction is proposed for the inhibitory action of a tight-binding inhibitor possessing a thiol group.  相似文献   

11.
The polymerization and the polymerizabilities of indene, benzofuran, and 1,2-dihydronaphthalene are discussed from the point of view of ring strain, ring stabilization, and steric hindrance in the transition state. Monomer reactivities of these olefins were estimated from copolymerization with styrene and from the rate of addition of iodine bromide in acetic acid. Rates and degrees of polymerization are compared with monomer reactivities and resonance energies of indene, 1,2-dihydronaphthalene, and benzofuran as a measure of ring strain and stabilization. It is found that indence is 1.5–2.0 times more reactive than styrene. This high reactivity of indene is attributed to the ring strain in the monomer state and to the low amount of steric hindrance in the transition state of the coplanar five-membered cyclic olefin. 1,2-Dihydronaphthalene is strained and therefore reactive, but propagation to higher molecular weight products is impeded due to the steric hindrance. The reactivity of benzofuran is decreased by conjugative stabilization of C?C double bonds at the reaction site.  相似文献   

12.
Despite intensive experimental and computational studies, some important features of the mechanism of the photosynthetic CO(2)-fixing enzyme, Rubisco, are still not understood. To complement our previous investigation of the first catalytic step, the enolization of D-ribulose-1,5-bisphosphate (King et al., Biochemistry 1998, 44, 15414-15422), we present the first complete computational dissection of subsequent steps of the carboxylation reaction that includes the roles of the central magnesium ion and modeled residues of the active site. We investigated carboxylation, hydration, and C-C bond cleavage using the density functional method and the B3LYP/6-31G(d) level to perform geometry optimizations. The energies were determined by B3LYP/6-311+G(2d,p) single-point calculations. We modeled a fragment of the active site and substrate, taking into account experimental findings that the residues coordinated to the Mg ion, especially the carbamylated Lys-201, play critical roles in this reaction sequence. The carbamate appears to act as a general base, not only for enolization but also for hydration of the beta ketoacid formed by addition of CO(2) and, as well, cleavage of the C2-C3 bond of the hydrate. We show that CO(2) is added directly, without assistance of a Michaelis complex, and that hydration of the resultant beta ketoacid occurs in a separate subsequent step with a discrete transition state. We suggest that two conformations of the hydrate (gem-diol), with different metal coordination, are possible. The step with the highest activation energy during the carboxylation cycle is the C-C bond cleavage. Depending on the conformations of the gem-diol, different pathways are possible for this step. In either case, special arrangements of the metal coordination result in bond breaking occurring at remarkably low activation energies (between 28 and 37 kcal mol(-1)) which might be reduced further in the enzyme environment.  相似文献   

13.
The catalytic mechanism of a pyridoxal 5'-phosphate-dependent enzyme, l-serine dehydratase, has been investigated using ab initio quantum mechanical/molecular mechanical (QM/MM) methods. New insights into the chemical steps have been obtained, including the chemical role of the substrate carboxyl group in the Schiff base formation step and a proton-relaying mechanism involving the phosphate of the cofactor in the beta-hydroxyl-leaving step. The latter step is of no barrier and follows sequentially after the elimination of the alpha-proton, leading to a single but sequential alpha, beta-elimination step. The rate-limiting transition state is specifically stabilized by the enzyme environment. At this transition state, charges are localized on the substrate carboxyl group, as well as on the amino group of Lys41. Specific interactions of the enzyme environment with these groups are able to lower the activation barrier significantly. One major difficulty associated with studies of complicated enzymatic reactions using ab initio QM/MM models is the appropriate choices of reaction coordinates. In this study, we have made use of efficient semiempirical models and pathway optimization techniques to overcome this difficulty.  相似文献   

14.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

15.
Chemical-level details such as protonation and hybridization state are critical for understanding enzyme mechanism and function. Even at high resolution, these details are difficult to determine by X-ray crystallography alone. The chemical shift in NMR spectroscopy, however, is an extremely sensitive probe of the chemical environment, making solid-state NMR spectroscopy and X-ray crystallography a powerful combination for defining chemically detailed three-dimensional structures. Here we adopted this combined approach to determine the chemically rich crystal structure of the indoline quinonoid intermediate in the pyridoxal-5'-phosphate-dependent enzyme tryptophan synthase under conditions of active catalysis. Models of the active site were developed using a synergistic approach in which the structure of this reactive substrate analogue was optimized using ab initio computational chemistry in the presence of side-chain residues fixed at their crystallographically determined coordinates. Various models of charge and protonation state for the substrate and nearby catalytic residues could be uniquely distinguished by their calculated effects on the chemical shifts measured at specifically (13)C- and (15)N-labeled positions on the substrate. Our model suggests the importance of an equilibrium between tautomeric forms of the substrate, with the protonation state of the major isomer directing the next catalytic step.  相似文献   

16.
The reaction pathway of deformylation catalyzed by E. coli peptide deformylase (PDF) has been investigated by the density functional theory method of PBE1PBE on a small model and by a two-layer ONIOM method on a realistic protein model. The deformylation proceeds in sequential steps involving nucleophilic addition of metal-coordinated water/hydroxide to the carbonyl carbon of the formyl group, proton transfer, and cleavage of the C-N bond. The first step is rate-determining for the deformylation, which occurs through a pentacoordinated metal center. The estimated activation energies with the ONIOM method are about 23.0, 15.0, and 14.9 kcal/mol for Zn-, Ni-, and Fe-PDFs, respectively. These calculated barriers are in close agreement with experimental observations. Our results demonstrate that the preference for metal coordination geometry exerts a significant influence on the catalytic activity of PDFs by affecting the activation of the carbonyl group of the substrate, the deprotonation of the metal-coordinated water, and the stabilization of the transition state. This preference for coordination geometry is mainly determined by the ligand environment and the intrinsic electronic structures of the metal center in the active site of the PDFs.  相似文献   

17.
Alkaline phosphatases (APs) catalyze the hydrolysis and transphosphorylation of phosphate monoesters. Quantum mechanical, molecular dynamics, and molecular docking techniques were applied to computationally model the catalytic mechanism of human placental AP (PLAP). Kinetic and thermodynamic evaluations were performed for each reaction step. The functional significances of the more important residues within the active site were analyzed. The role of the metal ion at the metal binding site M3 was also examined. The calculated activation and reaction energy and free energy values obtained suggested the nucleophilic attack of the Ser92 alkoxide on the phosphorus atom of the substrate would be the rate-limiting step of the catalytic hydrolysis of alkyl phosphate monoesters by PLAP. The reactivities of the wild-type M3-Mg enzyme and the M3-Zn protein were compared, and the main difference observed was a change in the coordination number of the M3 metal for the M3-Zn enzyme. This modification in the active site structure lowered the free energy profile for the second chemical step of the catalytic mechanism (hydrolysis of the covalent phosphoserine intermediate). Consequently, a greater stabilization of the phosphoseryl moiety resulted in a small increment in the activation free energy of the phosphoserine hydrolysis reaction. These computational results suggest that the activation of APs by magnesium at the M3 site is caused by the preference of Mg(2+) for octahedral coordination, which structurally stabilizes the active site into a catalytically most active conformation. The present theoretical results are in good agreement with previously reported experimental studies.  相似文献   

18.
An array of 16 enantiomeric pairs of chiral phosphate, phosphonate, and phosphinate esters was used to establish the breadth of the stereoselective discrimination inherent within the bacterial phosphotriesterase and 15 mutant enzymes. For each substrate, the leaving group was 4-hydroxyacetophenone while the other two groups attached to the phosphorus core consisted of an asymmetric mixture of methyl, methoxy, ethyl, ethoxy, isopropoxy, phenyl, phenoxy, cyclohexyl, and cyclohexoxy substituents. For the wild-type enzyme, the relative rates of hydrolysis for the two enantiomers ranged from 3 to 5.4 x 10(5). Various combinations of site-specific mutations within the active site were used to create modified enzymes with alterations in their enantioselective properties. For the single-site mutant enzyme, G60A, the stereoselectivity is enhanced relative to that of the wild-type enzyme by 1-3 orders of magnitude. Additional mutants were obtained where the stereoselectivity is inverted relative to the wild-type enzyme for 13 of the 16 pairs of enantiomers tested for this investigation. The most dramatic example was obtained for the hydrolysis of 4-acetylphenyl methyl phenyl phosphate. The G60A mutant preferentially hydrolyzes the SP-enantiomer by a factor of 3.7 x 10(5). The I106G/F132G/H257Y mutant preferentially hydrolyzes the RP-enantiomer by a factor of 9.7 x 10(2). This represents an enantioselective discrimination of 3.6 x 10(8) between these two mutants, with a total of only four amino acid changes. The rate differential between the two enantiomers for any given mutant enzyme is postulated to be governed by the degree of nonproductive binding within the enzyme active site and stabilization of the transition state. This hypothesis is supported by computational docking of the high-energy, pentavalent form of the substrates to modeled structures of the mutant enzyme; the energies of the docked transition-state analogues qualitatively capture the enantiomeric preferences of the various mutants for the different substrates. These results demonstrate that the catalytic properties of the wild-type phosphotriesterase can be exploited for the kinetic resolution of a wide range of phosphate, phosphonate, and phosphinate esters and that the active site of this enzyme is remarkably amenable to structural perturbations via amino acid substitution.  相似文献   

19.
The reaction mechanism of serine proteases (trypsin), which catalyze peptide hydrolysis, is studied theoretically by ab initio QM/MM electronic structure calculations combined with Molecular Dynamics-Free Energy Perturbation calculations. We have calculated the entire reaction free energy profiles of the first reaction step of this enzyme (acylation process). The present calculations show that the rate-determining step of the acylation is the formation of the tetrahedral intermediate, and the breakdown of this intermediate has a small energy barrier. The calculated activation free energy for the acylation is approximately 17.8 kcal/mol at QM/MM MP2/(aug)-cc-pVDZ//HF/6-31(+)G/AMBER level, and this reaction is an exothermic process. MD simulations of the enzyme-substrate (ES) complex and the free enzyme in aqueous phase show that the substrate binding induces slight conformational changes around the active site, which favor the alignment of the reactive fragments (His57, Asp102, and Ser195) together in a reactive orientation. It is also shown that the proton transfer from Ser195 to His57 and the nucleophilic attack of Ser195 to the carbonyl carbon of the scissile bond of the substrate occur in a concerted manner. In this reaction, protein environment plays a crucial role to lowering the activation free energy by stabilizing the tetrahedral intermediate compared to the ES complex. The polarization energy calculations show that the enzyme active site is in a very polar environment because of the polar main chain contributions of protein. Also, the ground-state destabilization effect (steric strain) is not a major catalytic factor. The most important catalytic factor of stabilizing the tetrahedral intermediate is the electrostatic interaction between the active site and particular regions of protein: the main chain NH groups in Gly193 and Ser195 (so-called oxyanion hole region) stabilize negative charge generated on the carbonyl oxygen of the scissile bond, and the main chain carbonyl groups in Ile212 approximately Ser214 stabilize a positive charge generated on the imidazole ring of His57.  相似文献   

20.
The steric effect, exerted by enzymes on their reacting substrates, has been considered as a major factor in enzyme catalysis. In particular, it has been proposed that enzymes catalyze their reactions by pushing their reacting fragments to a catalytic configuration which is sometimes called near attack configuration (NAC). This work uses computer simulation approaches to determine the relative importance of the steric contribution to enzyme catalysis. The steric proposal is expressed in terms of well defined thermodynamic cycles that compare the reaction in the enzyme to the corresponding reaction in water. The S(N)2 reaction of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, which was used in previous studies to support the strain concept is chosen as a test case for this proposal. The empirical valence bond (EVB) method provides the reaction potential surfaces in our studies. The reliability and efficiency of this method make it possible to obtain stable results for the steric free energy. Two independent strategies are used to evaluate the actual magnitude of the steric effect. The first applies restraints on the substrate coordinates in water in a way that mimics the steric effect of the protein active site. These restraints are then released and the free energy associated with the release process provides the desired estimate of the steric effect. The second approach eliminates the electrostatic interactions between the substrate and the surrounding in the enzyme and in water, and compares the corresponding reaction profiles. The difference between the resulting profiles provides a direct estimate of the nonelectrostatic contribution to catalysis and the corresponding steric effect. It is found that the nonelectrostatic contribution is about -0.7 kcal/mol while the full "apparent steric contribution" is about -2.2 kcal/mol. The apparent steric effect includes about -1.5 kcal/mol electrostatic contribution. The total electrostatic contribution is found to account for almost all the observed catalytic effect ( approximately -6.1 kcal/mol of the -6.8 calculated total catalytic effect). Thus, it is concluded that the steric effect is not the major source of the catalytic power of haloalkane dehalogenase. Furthermore, it is found that the largest component of the apparent steric effect is associated with the solvent reorganization energy. This solvent-induced effect is quite different from the traditional picture of balance between the repulsive interaction of the reactive fragments and the steric force of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号