首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury(II) chloride is used to precipitate free sulphide from <10-ml samples of anoxic water. The sulphide-free supernatant solution can be used for estimation of sulphide by measuring the concentration of unreacted mercury(II) ion and for determinations of sulphate, inorganic phosphate, ammonia and nitrite by spectrophotometric methods which normally cannot be used because of sulphide interference. Concentrations that can be determined lie within the ranges: sulphide 0.5–180 000 μg S l?1, sulphate 0.024–2.77 g S l?1, ammonia 1–70 000 μg N l?1, nitrite 1–3000 μg N l?1, inorganic phosphate 1–4000 μg P l?1. Interstitial waters from estuarine sediments, tidal flats, mangrove swamps, and an anoxic estuarine basin were examined.  相似文献   

2.
A method is described for the determination of linear aldehydes (C1–C8) in waters. Aldehydes are extracted into n-pentane after derivatization with 2,4-dinitrophenyhydrazine and quantified by reversed-phase high-performance liquid chromatography with detection at 365 nm. With a 250-ml sample, the limit of detection is 1 μg l?1 for the C1–C8 aldehydes. The method is directly applicable to surface waters and drinking water. Analysis of different surface waters, treated water and a humic acid solution after ozonization showed that C1–C3 aldehydes predominated, their concentration increasing with increasing ozone dosage.  相似文献   

3.
QuEChERS and solid phase extraction (SPE) methods were applied for determining four herbicides (metazachlor, oxyfluorfen, quizalofop-p-ethyl, quinmerac) and one insecticide (α(±)-cypermethrin) in runoff water, soil, sunflower and oilseed rape plant matrices. Determination was performed using gas chromatography mass spectrometry (GC-MS), whereas high-pressure liquid chromatography mass spectrometry (HPLC-MS) was used for quinmerac. In all substrates linearity was evaluated using matrix-matched calibration samples at five concentration levels (50–1000 ng L?1 for water, 5–500 μg kg?1 for soil and 2.5–500 μg kg?1 for sunflower or oilseed rape plant). Correlation coefficient was higher than 0.992 for all pesticides in all substrates. Acceptable mean recovery values were obtained for all pesticides in water (65.4–108.8%), soil (70.0–110.0%) and plant (66.1–118.6%), with intra- and inter-day RSD% below 20%. LODs were in the range of 0.250–26.6 ng L?1 for water, 0.10–1.8 μg kg?1 for soil and 0.15–2.0 μg kg?1 for plants. The methods can be efficiently applied for field dissipation studies of the pesticides in energy crop cultivations.  相似文献   

4.
This work reports a method for extraction and analysis of thiosultap sodium, thiocyclam, and nereistoxin in pepper. Different extraction methods were tested to attain the best recoveries. The final extraction method combines acetonitrile extraction in an acidic medium with ultrasonic extraction followed by a cleanup step with anhydrous MgSO4. The analyses were performed on a Linear Ion Trap Quadrupole LC-MS/MS in negative mode for thiosultap sodium and in positive mode for thiocyclam and nereistoxin. Recovery studies carried out on peppers spiked at different fortification levels (20 and 200 μg?kg?1) yielded average recoveries in the range 58–87% with RSD (%) values below 20%. Calibration curves covering two orders of magnitude were performed and they were linear over the concentration range studied (0.001–0.5 mg?l?1). Instrumental detection limits were in the low μg?kg?1 range. Stability studies of thiosultap sodium in water were performed by evaluating a 100-μg?l?1 solution of this compound in water. It was analyzed over 7 days, after which more than 80% degradation of thiosultap sodium could be observed.  相似文献   

5.
An LC–MS/MS method with internal standard tolfenamic acid for determining diclofenac sodium (DCF) in dairy cow plasma was developed and validated. Samples were processed with protein precipitation by cold formic acid–acetonitrile. Determination of DCF was performed using LC–ESI+–MS/MS with the matrix‐matched calibration curve. The results showed that the method was sensitive (LOD 2 ng mL?1, LOQ 5 ng mL?1), accurate (97.60 ± 5.64%), precise (<10%) and linear in the range of 5–10,000 ng mL?1. A single intravenous (i.v.) or intramuscular (i.m.) administration of 5% diclofenac sodium injection at a dose of 2.2 mg kg?1 was performed in six healthy dairy cows according to a two‐period crossover design. The main pharmacokinetic (PK) parameters after a single i.v. administration were as follows: t1/2β, 4.52 ± 1.71 h; AUC, 77.79 ± 16.76 h μg mL?1; mean residence time, 5.16 ± 1.11 h. The main PK parameters after a single i.m. administration were as follows: Tmax, 2.38 ± 1.19 h; Cmax, 7.46 ± 1.85 μg mL?1; t1/2β, 9.46 ± 2.86 h; AUC 67.57 ± 13.07 h μg mL?1. The absolute bioavailability was 87.37 ± 5.96%. The results showed that the diclofenac sodium injection had PK characteristics of rapid absorption and slow elimination, and high peak concentration and bioavailability in dairy cows, and that the recommended clinical dosage of diclofenac sodium injection is 2.2 mg kg?1.  相似文献   

6.
Adsorption and desorption of butyltin compounds from sediment under simulated estuarine conditions depends upon the characteristics of the sediment including grain size distribution, percentage of organic carbon, clay mineralogy and aqueous butyltin concentration in the overlying water column. Sediments from Pearl Harbor, Hawaii, USA, primarily consisting of calcium carbonate mud and 18–28% organic carbon by weight, have generally abundant adsorption sites and display tributyltin partition coefficients (Kp) ranging from 1000 to 5000 μg kg?1 per μdm?3. Adsorption and desorption of butyltin from San Diego Bay, California, USA, sediments is linearly dependent upon the characteristics of each sediment and the range in Kp values is from approximately 20 to 2500 μg kg?1 per μg dm?3. Sandy, low-organic carbon sediments have low Kp while fine-grained, relatively organic-rich sediments have high Kp values. Similarly, samples containing significant amounts of high cation exchange capacity (CEC) clay minerals have relatively higher adsorption potentials than those consisting of low CEC minerals.  相似文献   

7.
A method for monitoring the contamination of soil with polycyclic aromatic hydrocarbons (PAHs) is introduced. Drying at elevated temperature is omitted to avoid losses of the more volatile constituents (primarily naphthalene). The soil sample, including its natural water content, is extracted with 2-methoxyethanol and cleaned up using a disposable C8 cartridge and the PAHs are eluted with pentane, concentrated and measured by capillary gas chromatography with flame ionization detection. Determination limits between 15 and 35μg kg?1 are obtained and the recovery is 80–90% measured at the 125 μg kg?1 spike level, except for naphthalene (66%). Special attention is given to the design of the spiking technique, which simulates natural incorporation as far as possible, takes account of evaporation losses and therefore allows “real” recovery rates to be determined.  相似文献   

8.
Automated selective iodometric methods for the determination of chlorine and oxychlorine species have been developed for use in the drinking water industry. By utilising kinetic-based methods, linear ranges observed were: chlorine, 0.2–10 mg l?1; chlorine dioxide, 0.3–10 mg l?1; chlorite ion, 0.08–5 mg l?1; and chlorate ion, 0.08–5 mg l?1.  相似文献   

9.
This work describes the optimisation of a method to determinate fifteen phenolic compounds in waters, sediments and biota (green marine algae) by liquid chromatography coupled to mass spectrometry (LC-MS) with atmospheric pressure chemical ionisation (APCI) in the negative mode. The LC separations of the studied compounds and their MS parameters were optimised in order to improve selectivity and sensitivity. Separation was carried out with a C18 column using methanol and 0.005% acid acetic as mobile phase in gradient mode. The molecular ion was selected for the quantitation in selective ion monitoring (SIM) mode. A solid-phase extraction (SPE) method was applied in order to preconcentrate the target analytes from water samples. However, extraction of the compounds from sediment and biota samples was carried out by liquid–solid extraction with methanol/water after studying the influence of other organic solvents. In addition, a clean-up step by SPE with HLB Oasis cartridges was necessary for sediments and biota. The proposed analytical methodology was validated in the target environmental matrices by the analysis of spiked blank matrix samples. Detection limits were 10–50 ng L–1 for water, 1–5 g kg–1 for sediments and 2.5–5 g kg–1 for biota samples. Good recoveries and precision values were obtained for all matrices. This methodology has been successfully applied to the analysis of incurred water, sediment and biota samples from Andalusia (Spain).  相似文献   

10.
A flow-injection system with on-line ion-exchange preconcentration on dual columns is described for the determination of trace amounts of heavy metals at μg l?1 and sub-μg l?1 levels by flame atomic absorption spectrometry. The degree of preconcentration ranges from 50- to 105-fold for different elements at a sampling frequency of 60 s h?1. The detection limits for Cu, Zn, Pb and Cd are 0.07, 0.03, 0.5, and 0.05 μg l?1, respectively. Relative standard deviations were 1.2–3.2% at μg l?1 levels. The behaviour of the different chelating exchangers used was studied with respect to their preconcentration characteristics, with special emphasis on interferences encountered in the analysis of sea water.  相似文献   

11.
Currently, the concentrations of methylamines in fine particulate matter (PM) are most often measured by aerosol time-of-flight mass spectrometry. A novel method for identification and determination of methylamines and methylamine-N-oxides in fine particles based on solid phase extraction (SPE) coupled with ion chromatography (IC) was developed. The experimental conditions including SPE conditions and chromatographic conditions were optimized. The quartz filter loaded with particulate matter (PM) samples was ultrasonically extracted with 20 mL of methanol and water (1:3, V/V) and the extraction process was repeated twice. After extraction, a total of 60 mL of extraction solvent was dropped into the extraction equipment for SPE. The Agilent AccuBond C18 was chosen for enriching the methylamine, dimethylamine, trimethylamine and trimethylamine-N-oxide in fine particles. Under the optimum conditions, the target species on Agilent AccuBond C18 were washed by 0.5 mL of acetonitrile solution and then concentrated (2 mL) before injecting into IC for analysis. A PRP X-200 (250 mm × 4 mm i.d.) was used for separation of analytes at 25 °C. The mobile phase was a mixture of 3% (V/V) acetonitrile solution and 5 mM nitric acid with the flow rate of 1 mL min–1. The four aliphatic amine species were fully resolved and completely separated within 30 min. The linearity of the four compounds ranged from 0.45 μg kg–1 to 1000 μg kg–1 with precisions of 2%–4% and detection limits of 0.002–0.003 μg m–3. The recoveries of the four aliphatic amine species in real PM samples were higher than 90%. This method was successfully applied in the analysis of real fine PM samples collected in Beijing. The concentrations of trimethylamine and methylamine-N-oxides were in the range of (0.01 ± 0.001) μg m–3–(0.08 ± 0.002) μg m–3 and (0.05 ± 0.001) μg m–3–(0.14 ± 0.002) μg m–3 for Beijing dust and haze PM samples, respectively.  相似文献   

12.
An electrochemical method for the determination of carbaryl, after prior oxidation to 1,4-naphthoquinone in natural water and soils is reported. The coulometric oxidation of carbaryl at a platinum electrode was studied using 0.024 mol/L Britton-Robinson buffer (pH 7.0). The reduction of the oxidation product 1,4-naphthoquinone at a dropping mercury electrode was used for the indirect determination of carbaryl after separation on C18 Sep-pak cartridges by differential pulse polarography (detection limits: 0.41 mg L?1 of water and 0.47 mg kg?1 of soil) and directly without separation by adsorptive stripping voltammetry (detection limits: 5 μg L?1 of water and 7 μg kg?1 of soil, for 75 s preconcentration time). Relative errors were lower than 3.7% and relative standard deviations smaller than 4.5%.  相似文献   

13.
The candoluminescence of terbium and indium was studied in various matrices coated on CaO/CaSO4 rods. Terbium was studied in Y2O3, Gd2O3, ThO2 and La2O3. Calibration graphs were linear over different ranges, up to 90 ng in some cases, with 0.2–0.3 ng μl?1 detection limits and 2.8–3.2% relative standard deviations (c.s.d.). The candoluminescence of indium in Y2O3, Gd2O3 and Al2O3 was also examined. Calibration graphs were linear over different ranges, up to 20 ng in some cases, with detection limits of 0.08 ng μl?1 for Y2O3 and Al2O3 and 0.2 ng μl?1 for Gd2O3 with r.s.d. of 2.5–2.9%. There are many interferences.  相似文献   

14.
A sensitive, automated method for the determination of boron in water samples is described, involving flow injection with on-line ion-exchange preconcentration and spectrophotometric detection of the azomethine-H—boron complex. The method is applicable to various water samples and is free from interferences, even in coloured samples. Detection limits of 5 μg l?1 at 20 samples h?1 and 1 μg l?1 at 10 samples h?1 with relative standard deviations of < 10% at 1–10 μg l?1 and < 5%at 10–200 μg l?1 levels of boron were achieved. The recoveries for spiked natural water samples ranged from 96 to 101%. The method compares favourably with inductively coupled plasma atomic emission spectrometry.  相似文献   

15.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

16.
《Analytical letters》2012,45(4):570-581
Two simple, sensitive, and specific high-performance liquid chromatography and thin-layer chromatography methods were developed for the simultaneous estimation of Amlodipine besilate (AM) and Valsartan (VL). Separation by HPLC was achieved using a xTerra C18 column and methanol /acetonitrile /water/ 0.05% triethylamine in a ratio 40:20:30:10 by volume as mobile phase, pH was adjusted to 3 ± 0.1 with o-phosphoric acid. The flow rate was 1.2 mL min?1. The linearity range was 0.2 to 2 µg mL?1 for amlodipine besilate and 0.4 to 4 µg mL?1 for Valsartan with a mean percentage recovery of 99.59 ± 0.523% and 100.61 ± 0.400% for amlodipine besilate and valsartan, respectively. The TLC method used silica gel 60 F254 plates; the optimized mobile phase was ethyl acetate/ methanol / ammonium hydroxide (55:45:5 by volume). Quantitatively, the spots were scanned densitometrically at 237 nm. The range was 0.5–4.0 µg spot?1 for amlodipine besilate and 2.0–12.0 µg spot?1 for valsartan. The mean percentages recovery was 99.80 ± 0.451% and 100.61 ± 0.363% for amlodipine besilate and valsartan, respectively. The HPLC method was found to be simple, selective, precise, and reproducible for the estimation of both drugs from spiked human plasma.  相似文献   

17.
The interaction between anionic surfactants (AS) and 1‐hexadecyl‐3‐methylimidazolium bromide [C16mim]Br was studied by using resonance light scattering (RLS) technique, UV‐Vis spectrophotometry and fluorometric methods. In Britton Robinson (BR) buffer (pH 6.0), [C16mim]Br reacted with AS to form supermolecular complex which resulted in enhancement in RLS intensity. Their maximum RLS wavelengths were all at 390 nm. Some important interacting experimental variables, such as the solution acidity, [C16mim]Br concentration, salt effect and addition order of the reagents, were investigated and optimized. Under the optimum conditions, quantitative determination ranges were 0.001–7 μg·mL?1 for dodecyl sodium sulfate (SDS), 0.001–6 μg·mL?1 for sodium dodecylbenzene sulfonate (SDBS) and 0.005–7 μg·mL?1 for sodium lauryl sulfonate (SLS), respectively, while the detection limits were 1.3 ng·mL?1 for SDS, 1.0 ng·mL?1 for SDBS and 5.1 ng·mL?1 for SLS, respectively. Based on the ion‐association reaction, a highly sensitive, simple and rapid method has been established for the determination of AS.  相似文献   

18.
Vapor pressure osmometry was applied to the systems calcium l-aspartate ((S)-aminobutanedioic acid calcium salt)?+?water for varying molalities of Ca–l-Asp (mCa–l-Asp?=?0.01–1.02 mol·kg?1) and guanidinium hydrochloride (methanamidine hydrochloride)?+?sodium L–aspartate ((S)–aminobutanedioic acid sodium salt)?+?water, varying the molalities of GndmCl and Na–l-Asp (mNa–l-Asp?=?0.1, 0.25, 0.4, 0.57 mol·kg?1 and mGndmCl?=?0.1–1.1 mol·kg?1) at T?=?298.15 K and 310.15 K. From vapor pressure osmometry, activities of water, and the corresponding osmotic coefficients of the mixtures Ca–l-Asp?+?water and Na–l-Asp?+?GndmCl?+?water have been calculated, both being directly related to the chemical potentials of the different species and therefore to their Gibbs energy. Mean molal ion activity coefficients were obtained from experimental data fits with the Pitzer equations and the corresponding dual and triple interaction parameters were derived for the Ca–l-Asp?+?water binary system. β(2) Pitzer parameters different from zero are required for Ca–l-Asp in water to reproduce the osmotic coefficient decrease with increasing concentration. Mean Spherical Approximation parameters accounting for Coulomb and short range interactions that describe the calcium and magnesium aspartates and glutamates are given. The decrease in the chemical potential of the aspartates corresponds to the Hofmeister series: NaAsp?>?Mg(Asp)2?>?CaAsp. A strong interaction between amino acid and salt due to specific dispersion interactions in amino acid salt systems containing guanidinium based salt has been revealed that is in agreement with MD and half-empirical quantum-chemical calculations.  相似文献   

19.
The determination of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2,4,5-trichlorophenoxy) propionic acid (Silvex) in water at the μg l-1 level is based on liquid/ liquid extraction and high-performance liquid chromatography. Sample preparation for water samples is simplified. The ranges of linear response are 50 ng to 60 μg for 2,4-D and 30 ng to 60 μg for Silvex. The average recoveries of 2,4-D at the 10 μg l-1 and 1 μg l-1 levels are 91% and 120%, respectively, while the average recoveries of Silvex at the 10 μg l-1 and 1 μg l-1 levels are 85% and 110%, respectively.  相似文献   

20.
A method based on anodic stripping voltammetry at the mercury-coated graphite electrode has been developed for the direct determination of bismuth and antimony at their natural levels in sea water. Bismuth plated at -0.4 V from sea water made 1 M in hydrochloric acid gives a stripping peak proportional to concentration at -0.2 V without interference from antimony or other metals normally present. Antimony may be plated from sea water made 4 M in hydrochloric acid and gives a stripping peak at -0.2 V proportional to the sum of bismuth and antimony. By use of the standard addition technique, satisfactory results were obtained for sea water samples with concentration ranges of 0.02–0.09 μg kg?1 for bismuth and 0.2–0.5 μg kg?1 for antimony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号