首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work experimentally verifies and proves the two long since postulated matrix-assisted laser desorption/ionization (MALDI) analyte protonation pathways known as the Lucky Survivor and the gas phase protonation model. Experimental differentiation between the predicted mechanisms becomes possible by the use of deuterated matrix esters as MALDI matrices, which are stable under typical sample preparation conditions and generate deuteronated reagent ions, including the deuterated and deuteronated free matrix acid, only upon laser irradiation in the MALDI process. While the generation of deuteronated analyte ions proves the gas phase protonation model, the detection of protonated analytes by application of deuterated matrix compounds without acidic hydrogens proves the survival of analytes precharged from solution in accordance with the predictions from the Lucky Survivor model. The observed ratio of the two analyte ionization processes depends on the applied experimental parameters as well as the nature of analyte and matrix. Increasing laser fluences and lower matrix proton affinities favor gas phase protonation, whereas more quantitative analyte protonation in solution and intramolecular ion stabilization leads to more Lucky Survivors. The presented results allow for a deeper understanding of the fundamental processes causing analyte ionization in MALDI and may alleviate future efforts for increasing the analyte ion yield.  相似文献   

2.
Reduction of analytes in matrix-assisted laser desorption/ionization (MALDI) often obscures the actual determination of molecular structure. To address the redox reactions in laser desorption/ionization processes, the organic dyes Methylene Blue, Janus Green B, Crystal Violet and Rhodamine B were analyzed by MALDI or by desorption/ionization on porous silicon (DIOS). Susceptibility to reduction in MALDI was dependent on both the reduction potentials of analytes and the molar ratio of analyte to matrix molecules. Addition of Cu(II) ions as an electron scavenger suppressed the reduction of Methylene Blue in MALDI. The results suggested that electron transfer to analytes from the sample target and/or from the matrix contributed to the reduction. In DIOS, the reductions of organic dyes were more prominent than in MALDI, and were not prevented by Cu(II) ion doping, probably due to direct contact of the analytes with silicon which had little electric resistance.  相似文献   

3.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and laser desorption/ionization (LDI-)TOFMS have been used to characterize Suwannee River humic substances, obtained from the International Humic Substances Society (IHSS), and Armadale soil fulvic acid (ASFA). An array of MALDI matrices were tested for use with humic substances, including alpha-cyano-4-hydroxycinammic acid (CHCA), 2-(4-hydroxyphenylazo)benzoic acid (HABA), 2,5-dihydroxybenzoic acid (DHBA), sinapinic acid, dithranol and norharmane. DHBA yielded the best results, exhibiting superior ionization efficiency, low noise, broad applicability to the analytes of interest, and most importantly producing an abundance of high mass ions, the highest observed being m/z 1848. A number of sample preparation modes were investigated; the overlayer method improved sample/matrix homogeneity and hence shot-to-shot reproducibility. The choice of the matrix, mass ratio of analyte to matrix, and the sample preparation protocol, were found to be the most critical factors governing the quality of the mass spectra. Matrix suppression was greatly enhanced by ensuring good mixing of matrix and analyte in the solid phase, proper optimization of the matrix/analyte ratio, and optimizing delayed extraction to ensure complete matrix-analyte reaction in the plume before ions are moved to the flight tube. A number of common features, in particular specific ions which could not be attributed to the matrices or to contaminants, were present in the spectra of all the humic substances, regardless of origin or operational definition. Additionally, a prominent repeating pattern of peaks separated by 55, 114 and 169 Da was clearly observed in both LDI and MALDI, suggesting that the humic compounds studied here may have quasi-polymeric or oligomeric features.  相似文献   

4.
The propensities of a series of peptide ions produced by both electrospray and atmospheric pressure matrix assisted laser desorption ionization (AP-MALDI) to fragment in an ion trap mass spectrometer under various conditions were studied in detail by measuring the extent of fragmentation of precursor ions by collision induced dissociation (CID) as a function of applied resonance excitation RF voltage. For the most basic peptides, the energy required to fragment MH+ ions generated by electrospray exceeded that required to fragment equivalent AP-MALDI ions under identical instrumental conditions; the reverse was observed for a peptide incorporating no basic residues, while peptides of intermediate basicity showed little difference between the ionization methods. This correlation between peptide basicity and the difference in the energy required to induce fragmentation of MH+ ions generated by AP-MALDI and electrospray is attributed primarily to a trend in the internal energies of the ions generated by AP-MALDI (the greater the difference in gas-phase basicities between the matrix and the analyte the greater the internal energy of the analyte ions produced). Furthermore the internal energies of ions produced by AP-MALDI, but not the equivalent ions formed by electrospray, were observed to decrease with decreasing analyte concentration. We attribute this finding to the cooling effect of endothermic dissociation of analyte ion/matrix molecule clusters following the matrix assisted laser desorption step. Time-resolved analyses (measurement of extent of fragmentation of precursor ions by CID as a function of pre-CID "cool times") revealed that cooling periods in excess of 250 ms were required to achieve internal energy equilibrium through cooling collisions with the helium buffer gas. Furthermore, these analyses demonstrated that, even after these extended cooling times, equivalent ions formed by the two ionization techniques showed different propensities to fragment. We conclude that the two different ionization techniques produce ion populations that may differ in their three-dimensional structure.  相似文献   

5.
Although matrix-assisted laser desorption/ionization (MALDI) was developed more than a decade ago and broad applications have been successfully demonstrated, detailed mechanism of MALDI is still not well understood. Two major models; namely photochemical ionization (PI) and cluster ionization (CI) mechanisms have been proposed to explain many of experimental results. With the photochemical ionization model, analyte ions are considered to be produced from a protonation or deprotonation process involving an analyte molecule colliding with a matrix ion in the gas phase. With the cluster ionization model, charged particles are desorbed with a strong photoabsorption by matrix molecules. Analyte ions are subsequently produced by desolvation of matrix from cluster ions. Nevertheless, many observations still cannot be explained by these two models. In this work, we consider a pseudo proton transfer process during crystallization as a primary mechanism for producing analyte ions in MALDI. We propose an energy transfer induced disproportionation (ETID) model to explain the observation of an equal amount of positive and negative ions produced in MALDI for large biomolecules. Some experimental results are used for comparisons of various models.  相似文献   

6.
In matrix-assisted laser desorption/ionization (MALDI), the true molecular structures of some analytes are not represented by the observed ions due to a redox reaction. In earlier reports, electron transfer from analyte to chemical matrix has been proposed for the oxidation of ferrocene derivatives in MALDI. To address such a redox phenomenon in laser desorption/ionization processes, two ferrocene derivatives, FcCH2CH2Fc and FcCH2NMe2 [Fc:(CsHs)Fe(CsH4)], were analyzed by a matrix-free method, desorption/ionization on porous silicon (DIOS). The oxidized species, Fc+CH2NMe2 and FcCH2CH2Fc+, were detected in the DIOS mass spectra. The results suggested that electron transfer from the analytes to the sample target occurs during the ionization process.  相似文献   

7.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions).  相似文献   

8.
Traditional matrix does not allow matrix-assisted laser desorption/ionization mass spectrometry(MALDI MS) to analyze volatile compounds,because volatile analytes may vaporize during the sample preparation process or in the high vacuum circumstance of ion source.Herein,we reported a Co and N doped porous carbon material(Co-NC) which were synthesized by pyrolysis of a Schiff base coordination compound.Co-NC could simultaneously act as adsorbent of volatile compounds and as matrix of MALDI MS,to provide the capability of MALDI MS to analyze volatile compounds.As adsorbent,Co-NC could stro ngly adsorb and enrich the volatile compounds in perfume and herbs,and hold them even in the high vacuum circumstance.On the other hand,Co-NC could absorb the energy of the laser,and then transfer the energy to the analyte for desorption and ionization of analyte in both negative and positive ionization modes.Additionally,the background interferences were avoided in the low-mass region(<500 Da) when using Co-NC as matrix,overcoming the challenges of MALDI MS analysis of small molecule compounds.In summary,Co-NC as matrix tremendously extended the application of MALDI MS.  相似文献   

9.
H Wang  Y Wu  B Guo  W Sun  L Ding  B Chen 《The Analyst》2012,137(17):3982-3988
A room temperature ionic liquids (RTILs) matrix-assisted desorption corona beam ionization (DCBI) technique was proposed. The quantification of the DCBI method for low-polar small molecules was improved greatly in terms of accuracy and precision. The thermal desorption processes of analytes in different liquid matrices under DCBI interrogation was investigated with thermal imaging and mass spectrometry simultaneously. When in a volatile liquid matrix, the analyte was not only desorbed thermally from the solid residue phase, but also desorbed along with evaporation of the matrix. The varying matrix evaporation speed and unstable sample introduction path clearly influence the quantitative result. With non-volatile RTILs utilized as the matrix in the sample introduction, a micro slow release system (MSRS) is formed to relieve the fluctuation of analyte evaporation. With the RTILs matrix-assisted DCBI-MS technique, dramatic improvement of the quantification precision (RSD from about 20% to less than 3%) for model analytes was achieved. Seventeen small pharmaceutical and four pesticide molecules were detected successfully. With a shared mechanism, other thermal desorption and/or APCI-related ambient ionization techniques may also benefit from the RTILs matrix.  相似文献   

10.
A divided probe that incorporates a potassium aluminosilicate glass target and an analyte/glycerol matrix target, spatially separated, was used to inject potassium ions (K+) into the high-pressure “selvedge” region formed above the analyte/glycerol matrix target during fast-atom bombardment (FAB); [M+K]+ adduct ions that represent the types of gas-phase neutral molecules present in the selvedge region are observed. Computer modeling assisted in designing the divided target and an additional ion optical element for the FAB ion source to optimize interactions between K+ ions and the desorbed neutral molecules. The capability of injecting K+ ions into the FAB experiment has utility in both mechanistic studies and analyses. Experimental results here are consistent with a model for the desorption/ionization processes in FAB in which some types of neutral analyte molecules are desorbed intact and are subsequently protonated by glycerol chemical ionization. Unstable protonated molecules undergo unimolecular decomposition to yield observed fragment ions. The use of K+ cationization of analytes for molecular weight confirmation is demonstrated, as well as its utility in FAB experiments in which mixtures are encountered.  相似文献   

11.
The mechanisms responsible for matrix-assisted laser desorption/ionization (MALDI) are far from being well understood, particularly where infrared laser irradiation is used to initiate the process. We measured the emission yields and kinetic energy distributions of positive ions emitted from 2,5-dihydroxybenzoic acid loaded with angiotensin II in a standard MALDI preparation during irradiation with an infrared free-electron laser tuned to 2.94 microm. As the laser intensity is scanned through the MALDI threshold, we see a marked change in the energy distributions of the matrix ion. Above threshold, the energy distributions of both analyte and matrix cations are constant over a broad range of laser intensities. This behavior does not appear to be consistent with any extant model of the MALDI mechanism.  相似文献   

12.
A high-performance orthogonal time-of flight (TOF) mass spectrometer, in combination with the matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure (∼1 torr in N2), was used to perform MALDI-TOF analyses of pentacene and some of its derivatives with and without an added matrix. These molecules are among the most interesting semiconductor materials for organic thin film transistor applications (OTFT). The observation of ion-molecule reactions between “cold” analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI-TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene.  相似文献   

13.
张菁  王昊阳  郭寅龙 《中国化学》2005,23(2):185-189
Twenty common amino acids have been analyzed successfully by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) using carbon nanotubes as matrix. From the spectra, little or no background interference or fragmentation of the analytes has been observed. This method was also applied to the analysis of amino acid mixture successfully. Carbon nanotubes have some features such as large surface area to disperse the analyte molecules sufficiently and prevent the sample aggregation and strong ultraviolet absorption to transfer energy easily to the analyte molecules. The present method has potential application for the rapid and sensitive analysis of amino acids and their mixture.  相似文献   

14.
This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.  相似文献   

15.
表面解吸常压化学电离质谱快速分析六味地黄丸   总被引:1,自引:0,他引:1  
采用新型表面解吸常压化学电离(Surface Desorption Atmospheric Pressure Chemical Ionization, SDAPCI)质谱法, 在敞开环境下, 对潮湿的空气进行电晕放电产生试剂离子, 进而在六味地黄丸表面发生解吸电离过程, 在无需复杂预处理的前提下对六味地黄丸中的待测物进行离子化, 从而获得了六味地黄丸在正负离子模式下的化学指纹图谱, 并利用主成分分析法对质谱指纹数据进行处理, 可对6个厂家生产的多个批次产品进行较好的区分. 结果表明, SDAPCI-MS技术能够快速测定六味地黄丸的剂型和生产厂家信息, 并能够对目标组分做多级串联质谱鉴定, 发现痕量目标组分. 研究方法可望应用于中成药药品生产质量控制和成品检测等领域.  相似文献   

16.
Energy transfer (ET) from excited matrix to fluorescent traps is used to probe the mobility of excitations in the matrix-assisted laser desorption/ionization (MALDI) matrix material 2,5-dihydroxybenzoic acid. The dependence of host and guest fluorescence on excitation density (laser intensity) and trap concentration gives clear evidence for long-range energy transport in this matrix. This conclusion is further supported by time-resolved emission data showing a 2 ns delay between matrix and trap emission. Rate equation and random walker models give good agreement with the data, allowing determination of hopping, collision, and trapping parameters. Long-range energy transfer contributes to the pooling reactions which can lead to primary ions in MALDI. The results validate the pooling aspect of the prior quantitative MALDI ionization model (J. Mass Spectrom. 2002, 37, 867-877). It is shown that exciton trapping can decrease MALDI ion yield, even at low trap concentration.  相似文献   

17.
In matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI TOF MS), analyte signals can be substantially suppressed by other compounds in the sample. In this technical note, we describe a modified thin‐layer sample preparation method that significantly reduces the analyte suppression effect (ASE). In our method, analytes are deposited on top of the surface of matrix preloaded on the MALDI plate. To prevent embedding of analyte into the matrix crystals, the sample solution were prepared without matrix and efforts were taken not to re‐dissolve the preloaded matrix. The results with model mixtures of peptides, synthetic polymers and lipids show that detection of analyte ions, which were completely suppressed using the conventional dried‐droplet method, could be effectively recovered by using our method. Our findings suggest that the incorporation of analytes in the matrix crystals has an important contributory effect on ASE. By reducing ASE, our method should be useful for the direct MALDI MS analysis of multicomponent mixtures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The effect of surface activity in surface-assisted laser desorption/ionization (SALDI) mass spectrometry was examined. Several surfactants, including p-tolunensulfonic acid (PTSA), sodium dodecyl sulfate and alkyltrimethylammonium bromide, were used as analytes or additives in the SALDI matrix to demonstrate the surface activity effect. The experimental results demonstrate that analytes that have good surface activity have good sensitivity. Adding suitable amounts of surfactants to the SALDI matrix can dramatically enhance the sensitivity of analytes lacking surface activity. We propose that the enhancement of analyte signals is due to the ionic interaction between ionic surfactants and analytes because non-ionic surfactant additives in the SALDI matrix do not affect the analyte signals. The detection limit of methylephedrine can be as low as 100 pg in the SALDI analysis of 0.5 M PTSA additive in the SALDI matrix. Although other surfactants can also be used as matrix additives to enhance the analyte signal, they do not improve the ion abundance as much as PTSA does.  相似文献   

19.
The dependence of the number of desorbed particles on laser fluence has been investigated for matrix-assisted laser desorption/ionization (MALDI) of analyte and matrix ions as well as for (photoionized) neutral matrix molecules using a homogeneous “flat-top” laser profile. Laser spot diameters ranging from 10 to 200 μm in size have been used. 2,5-Dihydroxybenzoic acid (DHB) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapic acid) have been tested as matrices. The threshold (for ion detection) is higher and the dependence of the ion signal upon higher-than-threshold fluences is stronger for directly desorbed ions than for photoionized neutral molecules. Directly desorbed analyte ions exhibit the same dependence on fluence as the matrix ions with only minor differences between the two matrices tested, so both have approximately the same detection threshold. For both ions and photoionized neutral molecules, the fluence threshold increases with decreasing spot size while the slope of the intensity/fluence curves decreases. A quasi-thermal, sublimation/desportion model was found to describe the experimental results with excellent precision. For a complete explanation, non-equilibrium effects had to be taken into account.  相似文献   

20.
The Bioaerosol Mass Spectrometry (BAMS) system was developed for the real-time detection and identification of biological aerosols using laser desorption ionization. Greater differentiation of particle types is desired; consequently MALDI techniques are being investigated. The small sample size ( approximately 1 microm3), lack of substrate, and ability to simultaneously monitor both positive and negative ions provide a unique opportunity to gain new insight into the MALDI process. Several parameters known to influence MALDI molecular ion yield and formation are investigated here in the single particle phase. A comparative study of five matrices (2,6-dihydroxyacetophenone, 2,5-dihydroxybenzoic acid, alpha-cyano-4-hydroxycinnamic acid, ferulic acid, and sinapinic acid) with a single analyte (angiotensin I) is presented and reveals effects of matrix selection, matrix-to-analyte molar ratio, and aerosol particle diameter. The strongest analyte ion signal is found at a matrix-to-analyte molar ratio of 100:1. At this ratio, the matrices yielding the least and greatest analyte molecular ion formation are ferulic acid and alpha-cyano-4-hydroxycinnamic acid, respectively. Additionally, a significant positive correlation is found between aerodynamic particle diameter and analyte molecular ion yield for all matrices. SEM imaging of select aerosol particle types reveals interesting surface morphology and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号