首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
利用激光闪光光解方法研究了一系列胺类、酚类、醇类在脱氧乙腈中猝灭噻吨酮(TX)三重态的反应,得到了相应的瞬态吸收光谱和猝灭速率常数(kq).通过对光谱演变特性的分析,推断出三重态噻吨酮与不含有活泼氢的胺发生了电子转移反应,与含有活泼氢的胺发生了电子-质子转移反应.三重态噻吨酮与酚类、醇类反应中观察到噻吨酮加氢自由基的生成,据此推断出三重态噻吨酮与酚类、醇类发生了氢转移反应.胺类的猝灭速率常数随着反应自由能变(ΔG)的增大而减小,说明电子转移影响了噻吨酮三重态的猝灭.酚类的猝灭速率常数先随ΔG增大而减小,后随酚阳离子的酸性增强逐渐增大,可能是猝灭过程中电子转移影响减弱的同时氢转移影响逐渐增强.醇类的猝灭速率常数随着醇的α-C—H键能的增大而减小,说明α-C—H键能是影响噻吨酮三重态猝灭的关键因素.比较以前研究的胺类、酚类、醇类与三重态呫吨酮(XT)、芴酮(FL)反应的结果可知,由于分子结构差异性的影响,相关的猝灭速率常数按照呫吨酮、噻吨酮、芴酮的顺序逐渐减小.  相似文献   

2.
基于非平衡溶剂化能的约束平衡方法和溶剂重组能的新表达式, 实现了电子转移反应溶剂重组能的数值解, 研究了二氯二氰基苯醌(DDQ)及其阴离子体系DDQ-之间的自交换电子转移反应. 考虑了DDQ与DDQ-分子以平行方式形成受体-给体络合物时的两种构型. 引入线性反应坐标, 计算了该反应在不同溶剂中的溶剂重组能. 基于两态变分模型得到了反应的电子耦合矩阵元. 根据电子转移动力学模型, 计算了该自交换电子转移反应的速率常数.  相似文献   

3.
单金缓  刘铁英 《化学学报》1994,52(11):1140-1144
本文采用分光光度法研究了在甲醇介质中二(N,N-二乙基二硫代氨基甲酸)烷基黄原酸合钴(Ⅲ)与二丙胺,二正丁胺在298.2K~313.2K(R=Me,Et,n-Pr) 的反应动力学及机理.结果表明对配合物是准一级反应,对二正丁胺是分数级. 反应速率随着基团R的增加而减小,随着温度的增加而增加,随着溶剂中水含量的增大而增加.提出了一种含有前期平衡的反应机理.据此导出了一个能够解释实验事实的速率方程,求得了速控步骤的速率常数,并给出了相应的活化参数  相似文献   

4.
本文采用分光光度法研究了在甲醇介质中(N,N-二乙基二硫代氨基甲酸)烷基黄原酸合钴(Ⅲ)与二丙胺,二正丁胺在298.2K~313.2K(R=Me,Et,n-Pr)的反应动力学及机理.结果表明对配合物是准一级反应,对二正丁胺是分数级.反应速率随着基团R的增加而减小,随着温度的增加而增加,随着溶剂中水含量的增大而增加.提出了一种含有前期平衡的反应机理.据此导出了一个能够解释实验事实的速率方程,求得了速控步骤的速率常数,并给出了相应的活化参数.  相似文献   

5.
采用Varian XL200超导核磁谱仪,在200.057MHz和25±0.5℃条件下,测定了水溶液中Cu(Ⅱ)分别与脯氨酸、缬氨酸、α-氨基丁酸、苏氨酸、丙氨酸和甘氨酸配合物的配体交换反应速率常数.根据NMR原理导出了实验线宽与配体交换反应速率常数之间的关系,解释了弛豫时间随配体浓度的变化关系.实验表明,交换反应速率大小顺序与氨基酸配体的空间因素一致,即随氨基酸的碳原子数增加,交换反应速率常数减少.根据实验结果提出涉及三角双锥过渡态的反应机理.  相似文献   

6.
研究了酸催化下的2, 6-二甲氧基-2-嘧啶氧基-N-芳基苄胺衍生物Smiles重排反应的动力学,考察了盐酸的初始浓度、溶剂、反应温度和取代基对反应速率的影响。结果表明,盐酸的初始浓度增加,重排反应速率加快;在单一溶剂中反应速率的顺序为:甲醇>乙醇>二甲基亚砜>乙腈,而在甲醇/水(1:1, V/V)的混合溶剂中反应速率明显增加,其表观反应速率常数(kobs)值是甲醇溶剂中的5.27倍;在25-45 ℃温度范围内,各衍生物的反应速率随着温度的升高而加快,其活化能(73.99-76.92 kJ·mol-1)、活化焓(71.57-74.38 kJ·mol-1)及Gibbs自由能(81.51-85.77 kJ·mol-1)数值相近,仅活化熵(-24.38 --47.11 J·K-1·mol-1)有一定的差别;取代基常数和表观速率常数之间呈现一定的线性关系,环上吸电子基团的存在有利于反应速率的提高;实验验证了反应机理的合理性。  相似文献   

7.
电子自旋共振作为探针研究卤代溶剂的专属性效应   总被引:1,自引:0,他引:1  
庞雪  申前进  赵晓冉  晋卫军 《化学学报》2011,69(11):1375-1380
4-羟基-2,2,6,6-四甲基哌啶-1-氧自由基(4-OH-TEMPO)电子自旋共振的超精细耦合常数AN与溶剂极性的微观反应常数ET(30)和溶剂受体数AN呈现线性正相关. 并且在介电常数或偶极矩接近时, 含卤溶剂中超精细耦合常数AN普遍偏高. 除了一般的溶剂效应外, 在含卤溶剂中超精细耦合常数AN偏大的原因与专属性的卤键作用有关. 理论计算结果辅助印证了这一结论.  相似文献   

8.
利用abinitio方法,在UHF,UMP2及不同基组3-21G,6-31G^*,6-311+G^*和UMP2(full)/6-311+G^*水平上,研究了O~2/O~2^.^-自交换电子转移反应。优化了电子转移前后反应物和产物的结构,研究了体系能量的变化,计算了自交换电子转移反应的内重组能。对UHF方法和UMP2方法的计算结果进行了比较,并与实验结果进行了对照。结果表明UHF方法由于没有考虑组态相互作用,计算结果存在较大偏差,UMP2(full)/6-311+G^*水平上的计算结果与实验值吻合较好。在UMP2(full)/6-311+G^*水平上计算了气相自交换电子转移反应速率常数。在优化了电子转移复合物结构的基础上考虑了溶剂效应的影响,计算了水溶液中的溶剂重组能。研究结果表明O~2/O~2^.^-体系电子转移反应的活化能主要来源于溶剂重组能的贡献。最后计算了该反应在水溶液中的反应速率常数。理论计算结果与实验值吻合得很好。  相似文献   

9.
利用abinitio方法,在UHF,UMP2及不同基组3-21G,6-31G^*,6-311+G^*和UMP2(full)/6-311+G^*水平上,研究了O~2/O~2^.^-自交换电子转移反应。优化了电子转移前后反应物和产物的结构,研究了体系能量的变化,计算了自交换电子转移反应的内重组能。对UHF方法和UMP2方法的计算结果进行了比较,并与实验结果进行了对照。结果表明UHF方法由于没有考虑组态相互作用,计算结果存在较大偏差,UMP2(full)/6-311+G^*水平上的计算结果与实验值吻合较好。在UMP2(full)/6-311+G^*水平上计算了气相自交换电子转移反应速率常数。在优化了电子转移复合物结构的基础上考虑了溶剂效应的影响,计算了水溶液中的溶剂重组能。研究结果表明O~2/O~2^.^-体系电子转移反应的活化能主要来源于溶剂重组能的贡献。最后计算了该反应在水溶液中的反应速率常数。理论计算结果与实验值吻合得很好。  相似文献   

10.
硝基苯乙烯基芳香化合物光谱性质的研究   总被引:2,自引:0,他引:2  
本文通过9-对-硝基苯乙烯基蒽和1-对-硝基苯乙烯基芘在不同溶剂中的光谱数据,利用Lippert-Mataga公式估算了它们在激发态与基态时偶极矩的差值,计算了1-对-硝基苯乙烯基芘在不同溶剂中的辐射与非辐射速率常数,讨论了溶剂极性和温度对分子内光致电子转移和电荷分离的影响。文中还初步探讨了光诱导顺反异构化反应与分子内电荷转移的关系。  相似文献   

11.
We report ultrafast electron transfer (ET) in charge-transfer complexes that shows solvent relaxation effects consistent with adiabatic crossover models of nonadiabatic ET. The complexes of either dimethyl viologen (MV) or diheptyl viologen (HV) with 4,4'-biphenol (BP) (MVBP or HVBP complexes) have identical charge-transfer spectra and kinetics in ethylene glycol with approximately 900 fs ET decay. We assign this decay time as largely due to adiabatic control of a predicted approximately 40 fs nonadiabatic ET. The MVBP decay in methanol of 470 fs is reduced in mixtures having low (2-20%) concentrations of acetonitrile to as short as 330 fs; these effects are associated with faster relaxation time in methanol and its mixtures. In contrast, HVBP has much longer ET decay in methanol (730 fs) and mixture effects that only reduce its decay to 550 fs. We identify the heptyl substituent as creating major perturbations to solvent relaxation times in the methanol solvation shell of HVBP. These charge-transfer systems have reasonably well-defined geometry with weak electronic coupling where the electronic transitions are not dependent on intramolecular motions. We used a nonadiabatic ET model with several models for adiabatic crossover predictions to discuss the small variation of energy gap with solvent and the ET rates derived from adiabatic solvent control. A time correlation model of solvent relaxation was used to define the solvent relaxation times for this case of approximately zero-barrier ET.  相似文献   

12.
Intramolecular electron transfer (ET) rates in various solvents of mixed-valence biferrocene monocation (Fe(II), Fe(III)) and the 1',1' '-diiodo and 1',1' '-diethyl derivatives (respectively abbreviated as BFC(+), I(2)BFC(+), and Et(2)BFC(+)) were determined by means of the spin-lattice relaxation times of the protons, taking into account the local magnetic field fluctuation caused by the electron hopping between the two ferrocene units. We also determined the ET rates of a mixed-valence diferrocenylacetylene monocation (DFA(+)) in order to examine the effect of the insertion of an acetylene bridge between the two ferrocene units. The insertion of the bridge decreased the ET rate, while the effect of substitution on the cyclopentadienyl rings on the rate was minor. The observed rates for each mixed-valence monocation in various solvents did not correlate with the reorganization energies, but we did find a significant contribution of the solvent dynamics. The observed rates were considerably higher than those expected on the basis of the Sumi-Marcus-Nalder model in which the solvents were regarded as dielectric continua. The slope of the logarithm plot of the pre-exponential factors in various solvents for each mixed-valence monocation versus the inverse of the longitudinal dielectric relaxation times of the solvents was significantly smaller than unity, and the slope for DFA(+) was larger than those for BFC(+), I(2)BFC(+), and Et(2)BFC(+). These results were ascribed to a partial contribution of the dielectric friction to the dynamics along the solvent coordinate; the extent of the contribution decreased with a reduction in the ET distance. For the dynamics along the solvent coordinate of the ET reactions in methanol, the observed rates indicated an important contribution by the minor dielectric relaxation components with faster relaxation times, rather than the major component with an extraordinarily long relaxation time.  相似文献   

13.
A comparative theoretical investigation of single electron transfer (ET), single proton transfer (PT), and proton-coupled electron transfer (PCET) reactions in iron bi-imidazoline complexes is presented. These calculations are motivated by experimental studies showing that the rates of ET and PCET are similar and are both slower than the rate of PT for these systems (Roth, J. P.; Lovel, S.; Mayer, J. M. J. Am. Chem. Soc. 2000, 122, 5486). The theoretical calculations are based on a multistate continuum theory, in which the solute is described by a multistate valence bond model, the transferring hydrogen nucleus is treated quantum mechanically, and the solvent is represented as a dielectric continuum. For electronically nonadiabatic electron transfer, the rate expressions for ET and PCET depend on the inner-sphere (solute) and outer-sphere (solvent) reorganization energies and on the electronic coupling, which is averaged over the reactant and product proton vibrational wave functions for PCET. The small overlap of the proton vibrational wave functions localized on opposite sides of the proton transfer interface decreases the coupling for PCET relative to ET. The theory accurately reproduces the experimentally measured rates and deuterium kinetic isotope effects for ET and PCET. The calculations indicate that the similarity of the rates for ET and PCET is due mainly to the compensation of the smaller outer-sphere solvent reorganization energy for PCET by the larger coupling for ET. The moderate kinetic isotope effect for PCET arises from the relatively short proton transfer distance. The PT reaction is found to be dominated by solute reorganization (with very small solvent reorganization energy) and to be electronically adiabatic, leading to a fundamentally different mechanism that accounts for the faster rate.  相似文献   

14.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sj?din et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.  相似文献   

15.
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.  相似文献   

16.
Channel-based reaction-diffusion equations are solved analytically for two electron transfer (ET) models, where the fast inner-sphere coordinate leads to an ET reaction treated by Fermi's golden rule, and the slow solvent coordinate moves via diffusion. The analytic solution has let us derive an ET rate constant that modifies the Marcus-Jortner formula by adding a constant alpha which we call a dynamic correction factor. The dynamic correction factor measures the effect of solvent friction. When the relaxation of solvent dynamics is fast, the dynamic correction can be neglected and the ET rate constant reduces to the traditional Marcus-Jortner formula. If the solvent dynamic relaxation is slow, the dynamic correction can be very large and the ET rate can be reduced by orders of magnitude. Using a generalized Zusman-Sumi-Marcus model as a starting point, we introduce two variants, GZSM-A and GZSM-B, where in model A, only one quantum mode is considered for inner-sphere motion and in model B, a classical mode for inner-sphere motion is added. By comparing the two models with experimental data, it is shown that model B is better than model A. For the solvents that have a relaxation time ranging between 0 and 5 ps, our result agrees fairly well with experimental data; for the solvents that have a relaxation time ranging between 5 and 40 ps, our result deviates from the experimental values. After introducing an adjustable scaling index in the effective time correlation function of the reaction coordinate, good agreement is achieved between the experiment and the theory for model B for all of the solvents studied in this paper.  相似文献   

17.
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (DeltaG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-DeltaG0) of approximately 0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor--acceptor separation in the micellar ET reactions is substantially larger than for the donor--acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor--acceptor close contact suggests that there is an intervention of a surfactant chain between the interacting donor and acceptor in the micellar ET reaction.  相似文献   

18.
The electron transfer (ET) dynamics of an unusually rigid pi-stacked (porphinato)zinc(II)-spacer-quinone (PZn-Q) system, [5-[8'-(4' '-[8' '-(2' ' ',5' ' '-benzoquinonyl)-1' '-naphthyl]-1' '-phenyl)-1'-naphthyl]-10,20-diphenylporphinato]zinc(II) (2a-Zn), in which sub-van der Waals interplanar distances separate juxtaposed porphyryl, aromatic bridge, and quinonyl components of this assembly, have been measured by ultrafast pump-probe transient absorption spectroscopy over a 80-320 K temperature range in 2-methyl tetrahydrofuran (2-MTHF) solvent. Analyses of the photoinduced charge-separation (CS) rate data are presented within the context of several different theoretical frameworks. Experiments show that at higher temperatures the initially prepared 2a-Zn vibronically excited S1 state relaxes on an ultrafast time scale, and ET is observed exclusively from the equilibrated lowest-energy S1 state (CS1). As the temperature decreases, production of the photoinduced charge-separated state directly from the vibrationally unrelaxed S1 state (CS2) becomes competitive with the vibrational relaxation time scale. At the lowest experimentally interrogated temperature ( approximately 80 K), CS2 defines the dominant ET pathway. ET from the vibrationally unrelaxed S1 state is temperature-independent and manifests a subpicosecond time constant; in contrast, the CS1 rate constant is temperature-dependent, exhibiting time constants ranging from 4x10(10) s(-1) to 4x10(11) s(-1) and is correlated strongly with the temperature-dependent solvent dielectric relaxation time scale over a significant temperature domain. Respective electronic coupling matrix elements for each of these photoinduced CS1 and CS2 pathways were determined to be approximately 50 and approximately 100 cm-1. This work not only documents a rare, if not unique, example of a system where temperature-dependent photoinduced charge-separation (CS) dynamics from vibrationally relaxed and unrelaxed S1 states can be differentiated, but also demonstrates a temperature-dependent mechanistic transition of photoinduced CS from the nonadiabatic to the solvent-controlled adiabatic regime, followed by a second temperature-dependent mechanistic evolution where CS becomes decoupled from solvent dynamics and is determined by the extent to which the vibrationally unrelaxed S1 state is populated.  相似文献   

19.
Evidences of an intramolecular exciplex intermediate in a photoinduced electron transfer (ET) reaction of double-linked free-base and zinc phthalocyanine-C60 dyads were found. This was the first time for a dyad with phthalocyanine donor. Excitation of the phthalocyanine moiety of the dyads results in rapid ET from phthalocyanine to fullerene via an exciplex state in both polar and nonpolar solvents. Relaxation of the charge-separated (CS) state Pc(*+)-C60(*-) in a polar solvent occurs directly to the ground state in 30-70 ps. In a nonpolar solvent, roughly 20% of the molecules undergo transition from the CS state to phthalocyanine triplet state (3)Pc*-C60 before relaxation to the ground state. Formation of the CS state was confirmed with electron spin resonance measurements at low temperature in both polar and nonpolar solvent. Reaction schemes for the photoinduced ET reactions of the dyads were completed with rate constants obtained from the time-resolved absorption and emission measurements and with state energies obtained from the fluorescence, phosphorescence, and voltammetric measurements.  相似文献   

20.
The Sumi-Marcus theory is extended by introducing two approaches to investigate electron transfer reactions from weak-to-strong electronic coupling regime. One of these approaches is the quantum R-matrix theory, useful for dealing with the intramolecular vibrational motions in the whole electronic coupling domain. The other is the split operator approach that is employed to solve the reaction-diffusion equation. The approaches are then applied to electron transfer in the Marcus inverted regime to investigate the nuclear tunneling effect on the long time rate and the survival probabilities. The numerical results illustrate that the adiabatic suppression obtained from the R-matrix approach is much smaller than that from the Landau-Zener theory whereas it cannot be predicted by the perturbation theory. The jointed effects of the electronic coupling and solvent relaxation time on the rates are also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号