首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Colloidal Au/Ag multilayer films were prepared by alternate assembly of Au nanoparticles with a size of 5 +/- 1.2 nm and Ag nanoparticles with a size of 10 +/- 2.4 nm by using 1,5-pentanedithiol as cross-linker. Nanoporous gold films with a ligament size of 26.7 +/- 4.6 nm were then prepared by selective dissolution of sacrificial templates of silver particles in colloidal Au/Ag multilayers. The complete dissolution of Ag particles in colloidal Au/Ag multilayers in a mixture solution of 3.0 mM HAuCl(4) and 3 M NaCl took place at room temperature without damage of the colloidal Au film. This method to prepare nanoporous gold films was further extended to the preparation of nanoporous gold nanotubes by depositing colloidal Au/Ag film on the inner wall of anodic aluminum oxides (AAO) followed by dissolution of colloidal Ag and removal of AAO templates.  相似文献   

2.
对淀积在玻璃衬底上厚度约60 nm的金银合金溅射薄膜进行硝酸腐蚀脱银处理, 得到纳米多孔金薄膜. 利用自建的波长检测型表面等离子体共振(SPR)传感装置研究了腐蚀时间对纳米多孔金薄膜SPR特性的影响, 结果发现纳米多孔金薄膜与水溶液接触后在400-900 nm光谱范围内不具有SPR效应, 而当薄膜置于空气中时会产生明显的传播等离子体共振吸收峰, 其共振波长随腐蚀时间增加逐渐红移. 纳米多孔金薄膜在空气气氛中的SPR效应使其能够用于原位监测气相分子在孔内的吸附, 还可对在液相中吸附的生化分子进行离位测试. 本文对L-谷胱甘肽、L-半胱氨酸、2-氨基乙硫醇三种含巯基的生化小分子在纳米多孔金薄膜内的吸附进行了离位分析, 结果表明与传统的致密金薄膜SPR芯片比较, 纳米多孔金薄膜对这些分子显示出更高的灵敏度和更低的检测下限, 这归功于多孔金的大比表面积使其能够吸附大量的生化小分子. 实验还对乙醇蒸气在纳米多孔金薄膜内的吸附进行了原位监测, 发现吸附平衡所用时间较长, 约为160 min.  相似文献   

3.
This report describes the preparation of Pt-nanoparticle-coated gold-nanoporous film (PGNF) on a gold substrate via a simple "green" approach. The gold electrode that has been anodized under a high potential of 5 V is reduced by freshly prepared ascorbic acid (AA) solution to obtain gold nanoporous film electrode. Then the Pt nanoparticle is grown on the electrode by cyclic voltammetry (CV). The resulting PGNF electrode has highly ordered arrangement and large surface area, as verified by scanning electron microscopy (SEM) and CV, suggesting that the nanoporous gold film electrode provides a good matrix for obtaining PGNF with high surface area. Furthermore, the as-prepared PGNF electrode exhibited high electrocatalytic activity toward methanol oxidation in a 0.5 M H 2SO 4 solution containing 1.5 M methanol. The present novel strategy is expected to reduce the cost of the Pt catalyst remarkably.  相似文献   

4.
The electrodes (anode and cathode) have an important role in the efficiency of a microbial fuel cell (MFC), as they can determine the rate of charge transfer in an electrochemical process. In this study, nanoporous gold electrode, prepared from commercially available gold-made compact disk, is utilized as the anode in a two-chamber MFC. The performance of nanoporous gold electrode in the MFC is compared with that of gold film, carbon felt and acid-heat-treated carbon felt electrodes which are usually employed as the anode in the MFCs. Electrochemical surface area of nanoporous gold electrode exhibits a 7.96-fold increase rather than gold film electrode. Scanning electron microscopy analysis also indicates the homogeneous biofilm is formed on the surface of nanoporous gold electrode, while the biofilm formed at the surface of acid-heat-treated carbon felt electrode shows rough structure. Electrochemical studies show although modifications applied on carbon felt electrodes improve its performance, nanoporous gold electrode, due to its structure and better electrochemical properties, acts more efficiently as the MFC’s anode. The maximum power density produced by nanoporous gold anode is 4.71 mW m?2 at current density of 16.00 mA m?2, while this value for acid-heat-treated carbon felt anode is 3.551 mW m?2 at current density of 9.58 mA m?2.  相似文献   

5.
Prussian blue-modified nanoporous gold film (PB-NPGF) electrode was fabricated in this study. The fabrication was realized through electrodeposition of Prussian blue nanoparticles on the skeleton of a nanoporous gold film electrode without destroying the porous structure of NPGF electrode. The resulting PB-NPGF composite electrode showed very high electrocatalytic activity, repeatability, and stability to the reduction of H2O2. For instance, its activity was about twenty times that of the PB-modified polished gold electrode. More importantly, the sensitivity of the PB-NPGF composite electrode reaches as high as 10.6 μA μM−1 cm−2. This PB-NPGF composite electrode is very promising in the fields of catalysis, analysis, and so on.  相似文献   

6.
This paper describes the fabrication and electrochemical behavior of hierarchical nanoporous gold film (HNPGF) electrode by multi-cyclic electrochemical co-alloying/dealloying of two sacrifice metals (Zn and Sn) with gold. Different from the nanoporous gold film (NPGF) formed in the electrolyte of ZnCl2 in benzyl alcohol, the HNPGF obtained possessed special hierarchical porous structure and extra high roughness factor of 1250. This study reveals that hierarchical porous gold film electrodes are promising for catalysis.  相似文献   

7.
以聚乙烯不干胶掩膜版法结合金属溅射沉积技术在FR-4玻璃纤维版上制作了由6个金膜工作电极(1 mm×2 mm)、1个大面积金膜对电极(2 mm×13 mm)和1个厚膜Ag/AgCl参比电极构成的集成化金膜阵列电极系统,并利用电化学手段对阵列电极系统进行了考察。研究结果表明,K3Fe(CN)6在厚膜Ag/AgCl/1.0 mol/L NaCl参比电极上的式电位与商业Ag/AgCl/3.0 mol/L NaCl参比电极相差0.067 V;参比电极放置1个月后,测量电位未发生明显变化。利用扫描电化学显微镜对工作电极表面平整度进行考察,结果表明工作电极表面具有较好的平整度。通过测量H2SO4还原峰面积评价了工作电极电化学面积的批内、批间一致性;通过K3Fe(CN)6在电极上的Ipa/Ipc比值评价了工作电极电化学特性的批内、批间一致性。结果表明,阵列电极面积和电化学特性具有良好的批内和批间一致性。对集成化金膜阵列电极系统的研究结果表明,聚乙烯不干胶掩膜版法结合金属溅射沉积技术制作的阵列电极能够满足电化学电极的要求,可作为电化学生物传感器的基础电极。  相似文献   

8.
A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy film sthrough vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.  相似文献   

9.
Jing-Fang Huang 《Talanta》2009,77(5):1694-1688
Nanoporous noble metals are usually expected to exhibit much higher surface areas than smooth ones, making them of particular importance in many electrochemical applications. This paper describes a simple electrochemical method to modify a nanoporous Au (NPG) surface by using an under potentially deposited (UPD) Ag adlayer. The NPG electrode was obtained by the dealloying of Zn from AuxZn1−x in a 40-60 mol% zinc chloride-1-ethyl-3-methylimidazolium chloride (ZnCl2-EMIC) ionic liquid. The Ag UPD modified nanoporous gold (NPG/Ag(UPD)) electrode possessed dual properties, including an intrinsic high surface area from the nanoporous structure and the characteristics of the Ag UPD adlayer. The potential utility of using NPG/Ag(UPD) for sensors was demonstrated by its excellent sensitivity and selectivity in the electrochemical determination of chloride ions. An atomic scale metal monolayer obtained in the UPD process was selected as a sensing agent. The long-term storability and operational stability of the electrode were strongly demonstrated. Specifically, two couples of redox waves at ∼552 mV and ∼272 mV, respectively, were observed in the cyclic voltammograms (CVs) of the NPG/Ag(UPD) after the adsorption of chloride ions. The first couple of redox waves was related to the UPD and silver stripping and the second couple of redox waves was induced by the adsorption of Cl. The Cl adsorption process on the NPG/Ag(UPD) electrode followed the transient Langmuir adsorption kinetic model. The ratio of the integrated charges for these two anodic stripping peaks was selectively used to determine dilute chloride ion levels. The calibration curve was linear in the Cl concentration range of 0.5-30.0 μM.  相似文献   

10.
Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of ascorbic acid (AA) on palladium coated nanoporous gold film (PdNPGF) electrode. The deposition of palladium was done through oxidation of copper UPD layer by palladium ions. This low Pd‐loading electrode behaved as the nanostructured Pd for electrocatalytic reaction. The PdNPGF electrode exhibits excellent electrocatalytic behavior by enhancing the AA oxidation peak current due to synergistic influence of the Pd film and NPGF. The kinetic parameters such as electron transfer coefficient, α, was 0.47 and the voltammetric responses of the PdNPGF electrode were linear against concentration of AA in the ranges of 2.50–33.75 mM and 0.10–0.50 mM with CV and DPV respectively.  相似文献   

11.
十八硫醇自组装膜对TiO2光电氧化甲醇的敏化作用   总被引:3,自引:0,他引:3  
纳米电极;甲醇光电氧化;十八硫醇自组装膜对TiO2光电氧化甲醇的敏化作用  相似文献   

12.
基于自制的集成化三阵列金膜电极,构建了一个简单、灵敏、非标记的凝血酶阵列电化学适体传感器。以聚乙烯不干胶掩膜版法结合金属溅射沉积技术,在FR-4玻璃纤维板上制作了由3个金膜工作电极、1个大面积金膜对电极和1个厚膜Ag/AgCl参比电极构成的集成化金膜阵列电极系统。以集成化金膜阵列电极作为基础电极,采用巯基自组装技术将带巯基的凝血酶适体固定在3个金工作电极表面,巯基己醇封闭后获得三阵列凝血酶适体传感器,以电活性物质铁氰化钾作为电化学探针,基于凝血酶适体和凝血酶结合前后铁氰化钾在电极表面传质的不同导致电流变化进行凝血酶的测定。采用方波脉冲伏安法,铁氰化钾氧化峰电流的变化值与凝血酶浓度在 1.52~63 nmol/L范围内呈良好的线性关系,检出限(S/N=3)为0.92 nmol/L。  相似文献   

13.
导电高聚物修饰纳米尺度TiO~2多孔膜电极的光电化学研究   总被引:20,自引:1,他引:20  
用光电化学方法研究了用导电高聚物修饰的纳米晶TiO~2多孔膜电极在不含氧化还原对和含不同氧化还原对体系电解质溶液中的光电转换过程。TiO~2/导电高聚物多孔膜电极为双层n型半导体结构,内层TiO~2多孔膜的禁带宽度为3.26eV,外层聚吡咯(PPy)膜的禁带宽度为2.23eV,而聚苯胺(PAn)膜的禁带宽度为2.88eV。用导电高聚物修饰半导体电极能使其在可见光区的光吸收增加,光电流增强,且起始波长红移至>600nm,使宽禁带半导体电极的光电转换效率得到明显改善。  相似文献   

14.
In the multicolor photochromism of TiO2 nanoporous films loaded with photocatalytically deposited Ag nanoparticles, visible light-induced electron transfer from Ag to oxygen molecules plays an essential role. Here we examined the effect of TiO2 on the electron transfer. We found that not only photocatalytically deposited Ag, but also electrodeposited Ag and commercially available Ag nanoparticles in a nanoporous TiO2 film exhibit the multicolor photochromism. The electrodeposited Ag exhibits the multicolor photochromism also in a nanoporous ZnO film, but not in nanoporous indium-tin oxide (ITO) and SiO2 matrices. Photoelectrochemical measurements for the Ag-TiO2 nanocomposite elucidated that some of the photo-excited electrons on Ag are transferred to oxygen molecules via TiO2 and non-excited Ag. Thus, an n-type semiconductor plays an important role in the charge separation between the excited electrons and Ag+. Non-excited Ag on TiO2 also plays an important role in the charge separation and/or catalysis of oxygen reduction. Replacement of the non-excited Ag with Pt accelerated the electron transport from the photo-excited Ag to oxygen molecules and the photochromic behavior.  相似文献   

15.
细胞色素c在纳米氧化铝模板修饰电极上的直接电化学   总被引:5,自引:0,他引:5  
细胞色素c(Cytochrome c,Cyt c)是生物体中最常见的氧化一还原蛋白质,研究其在电极上的直接电化学,对于理解和认识生命体内的电子转移机制具有重要意义。Cytc与裸固体电极表面的直接接触通常会使其失去生物活性,因此,Cytc的电化学研究常借助于媒介体以实现其与电极之间的电子转移。纳米金属氧化物模板的表面积大且化学和光化学性质稳定,被广泛应用于太阳能电池和金属沉积等领域,本文研究氧化铝(AAO)模板对4,4’-二硫二吡啶存在下Cytc直接电化学促进作用。  相似文献   

16.
以多壁碳纳米管(MWNTs)修饰玻碳(GC)电极为基底,自组装金纳米粒子(AuNPs)及L-半胱氨酸(L-Cys)研制杂化膜修饰电极(L-Cys/AuNPs/MWNTs/GC).实验表明,该膜修饰电极在pH=7.0的KH2PO4-K2HPO4缓冲溶液中对细胞色素c(Cyt c)的直接电子转移反应具有良好的电催化作用,C...  相似文献   

17.
A novel one-step method has been developed for the fabrication of a three-dimensional (3D) nanoporous gold film (NPGF). The NPGF can be facilely made within 1 min from a pure gold substrate by applying a step potential just into the initial transition region of gold in an HCl medium. The pore formation and structural evolution have been revealed by scanning electron microscope, and the processes involve electrodissolution, disproportion, and deposition. The as-prepared 3D NPGF electrode has a large surface area and exhibits high catalytic activity in the electrooxidation of glucose. The NPGF electrode also shows excellent performance toward the electrooxidation of formic acid after being decorated with a tiny amount of Pt by electrodeposition.  相似文献   

18.
A “green” method for production of diethyl aminomalonate was presented by electrocatalytic reduction of diethyl oximinomalonate (DEOM) to diethyl aminomalonate in the acetic acid and sodium acetate medium at the surface of Ti/nanoporous TiO2 electrode. The heterogeneous catalytic redox behaviour of a nanoporous TiO2 film electrode surface was investigated by cyclic voltammetry (CV). A comparison of the CV recorded in the absence and in the presence of DEOM confirmed the catalytic reduction of DEOM by Ti(IV)/Ti(III) redox system on the nanoporous TiO2 film surface.  相似文献   

19.
用光电化学方法和UV-vis吸收光谱研究了PbS和Rul~2(NCS)~2(L=2,2'--bipydine--4,4'-dicarboxylicacid)复合敏化SnO~2纳米晶多孔膜电极的光电化学行为.实验表明,复合敏化比用PbS或RuL~2(NCS)~2分别单独敏化的效果好,不仅使电极的光吸收拓展到可见光区,而且复合敏化显著提高了光电转换效率,并讨论了复合敏化电极的电荷传输机理。  相似文献   

20.
纳米尺度TiO2/聚吡咯多孔膜电极光电化学研究   总被引:28,自引:4,他引:28  
用光电流作用谱,光电流-电势图和UV-Vis光说研究了TiO2/聚吡咯多孔膜电极在不含氧化还原对和含不同氧化还原体系电解质溶液中的光电转换过程。TiO2/聚吡咯多孔膜电极双层n型半导体结构,内层TiO2多孔膜的禁带宽度为3.26eV,外层聚吡咯膜的禁带宽度为2.2eV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号