首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以乙酰丙酮(ACAC)螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5O12/TiN材料.考察了TiN膜对尖晶石型Li4Ti5O12锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5O12/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0 mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5O12锂离子电池负极材料的电化学性能.  相似文献   

2.
锂钛复合氧化物锂离子电池负极材料的研究   总被引:17,自引:0,他引:17  
杨晓燕  华寿南  张树永 《电化学》2000,6(3):350-356
采用 3种化学方法合成锂钛复合氧化物 .应用X -射线衍射分析对其结构进行表征以及电化学性能测试 ,结果表明 :由Li2 CO3、TiO2 高温合成的锂钛复合氧化物为尖晶石结构的Li4Ti5 O12 .Li4Ti5 O12 电极在 1 .5V左右有一放电平台 ,充放电可逆性良好 ,即充电电压平台与此接近 ,且电极的比容量较大 ,循环性能良好 .以 0 .30mA·cm- 2 充放电时 ,首次放电容量可达 30 0mAh·g- 1,可逆比容量为 1 0 0mAh·g- 1,经多次充放电循环后 ,其结构仍保持稳定性 .试验电池测试表明 ,Li4Ti5 O12 可选作Li4Ti5 O12 /LiCoO2 锂离子电池的负极材料 .  相似文献   

3.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

4.
由半固相法制得锂离子电池负极材料Li4Ti5O12,并研究了Li4Ti5O12的碳包覆改性.采用XRD、SEM、TEM以及HRTEM观察和分析产物的相结构与形貌.采用恒流充放电、循环伏安法和交流阻抗技术测试了材料的电化学性质.结果表明,Li4Ti5O12因颗粒团聚电化学性能严重下降,该电极在0.1C和0.5C首周期放电容量分别为121.7和87.6 mAh·g-1;碳包覆Li4Ti5O12/C材料呈球形分布,能抑制颗粒团聚,该电极倍率<0.5C时的放电比容量大于180 mAh·g-1,超过Li4Ti5O12的理论放电比容量(175 mAh·g-1);在1C、5C和10C倍率下,其容量仍保持在136、79.9和58.3 mAh·g-1,碳包覆改性材料具有优异的循环寿命和高倍率性能.  相似文献   

5.
Li_4Ti_5O_(12)纳米片的合成及储锂性能研究   总被引:2,自引:0,他引:2  
以无定形的水合二氧化钛为前驱物,水热法合成了200~400nm大小的Li4Ti5O12纳米片作为锂离子电池负极材料.XRD(X射线衍射)、SEM(扫描电子显微镜)和TEM(透射电镜)分析表征样品的物相结构、表观形貌;循环伏安、充放电循环和电化学交流阻抗技术分别测定该纳米Li4Ti5O12在有机电解液和室温离子液体S114TFSI电解液中的电化学性能.结果表明,该材料具有较高的放电容量和良好的循环性能,有望成为锂二次电池新型负极材料.  相似文献   

6.
以纳米级锐钛矿型二氧化钛(TiO2)和氢氧化锂(LiOH)为原料,利用水热法合成了尖晶石型Li4Ti5O12材料,并研究了LiOH浓度、水热反应时间及热处理温度对Li4Ti5O12样品结构和电化学性能的影响,分析了Li4Ti5O12的形成过程.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)分析样品材料结构,观察材料形貌.结果表明,LiOH浓度0.2 mol.L-1、水热反应时间12 h及煅烧温度700℃可得到纯相尖晶石型Li4Ti5O12,该样品1C倍率放电比容量为146.3 mAh.g-1,40C高倍率其放电比容量仍有101.3 mAh.g-1.  相似文献   

7.
Li4Ti5O12具有充放电循环性能好、电压平台平稳、安全性高、价格低、环境友好、易于制备等优点,在锂离子电池负极材料中得到广泛研究.本文基于国内外近期的研究进展,综述了制备Li4Ti5O12的方法,着重介绍了固相、溶胶一凝胶、熔盐、燃烧、喷雾、水/溶剂热等几种主要的合成方法,并针对Li4Ti5O12电导率低的缺点,详...  相似文献   

8.
应用改进固相合成法制备亚微米Li4Ti5O12锂离子电池材料.X射线衍射(XRD)、扫描电镜(SEM)和激光粒度分析分别显示:物相单一且粒度均匀,D50为0.886μm,属于亚微米级材料.合适的粒度和分布使得该材料展示出优良的电化学性能,以其装配的半电池中,0.1C首次放电容量为165 mAh/g,5C时放电容量可达107 mAh/g,10C时仍可达到54 mAh/g.  相似文献   

9.
负极材料Li_4Ti_5O_(12)的蔗糖改性研究   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖晶石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1 mAh/g,在2C和3C倍率下首次放电比容量仍达143.8 mAh/g和129.4 mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

10.
为提高锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的首次充放电效率,对固相法合成的该材料进行了酸浸的改性研究。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构、形貌进行了表征。结果表明,Li[Li0.2Ni0.2Mn0.6]O2经过酸处理后,首次放电效率得到了较大的提高,但是放电中值电压明显下降。其中,0.5 mol.L-1的硝酸浸泡5 h的效果最佳,首次放电效率达到了86.7%,同时放电容量达到最大值的循环次数大大减少。酸浸改性的原因被归结于材料表面出现了富锂尖晶石结构Li4Mn5O12相。  相似文献   

11.
童庆松  杨勇  连锦明 《电化学》2005,11(4):435-439
以L iOH.H2O和Mn(CH3COO)2.2H2O作原料,应用微波-固相两段烧结法合成具有L i4Mn5O12结构特征,组成为L i3.22Na0.569Mn5.78O12.0的锂离子电池正极材料.XRD分析表明,在380℃的后处理温度下,微波烧结前处理有利于生成纯L i4Mn5O12尖晶石相.充放电实验表明,在4.5~2.5V电压区间,新制样品的初始放电容量为132 mAh.g-1,100循环的容量衰减率为6.8%;4个月存放样的初始放电容量为122 mAh.g-1,100循环的容量衰减率为17.4%.表现出较好的充放电性能和循环寿命.微波烧结使样品的Mn-O键被加强.  相似文献   

12.
以TiO2和Li2CO3分别作为钛源和锂源,聚苯胺(PANI)作为碳源和氮源,通过球磨辅助高温固相法合成N掺杂C包覆Li4Ti5O12.通过X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、元素分析仪(EA)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等对材料的结构和形貌进行了表征,并将合成材料制成电极片组装成扣式电池,测试其电化学性能.结果显示,钛源的处理对样品的性能有影响,通过对TiO2预包覆合成的N掺杂C包覆Li4Ti5O12具有优异的电化学性能,在碳、氮源的包覆比例(PANI与Li4Ti5O12的质量比)为5%时效果最佳:1C放电时其比容量为157.6mA·h/g,20C放电时其比容量仍可达到119.6mA·h/g;在10C充放电循环100次后,其比容量保持率为97.8%,表明N掺杂C包覆Li4Ti5O12具有优异的倍率性能和循环稳定性.  相似文献   

13.
反尖晶石LiNiVO4的湿法低温合成   总被引:1,自引:0,他引:1  
LixMn2O4正尖晶石化合物作为锂离子电池正极材料,由于其具有三维网络隧道结构而使电池呈现充放电电压高、 比容量大、 循环性能好和立方结构稳定等特点.Tarascon[1]认为,在LiMn2O4中若阳离子混合度越大,进入16d位置的Li+越多,Li+从16d位置移出将会使电池电压升高.但由于LixMn2O4中阳离子混合度不超过10%,因而限制了该材料的高电位及高电位峰的容量.反尖晶石化合物LiNiVO4的阳离子混合度可达到100%,因而会具有更高的电位(vs.Li).  相似文献   

14.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

15.
采用SAC (starch-assisted combustion)法和高温固相法分别合成锂离子电池正极材料LiNi0.01Co0.01Mn1.98O4, 使用X射线衍射仪、BET法、粒度分析仪及扫描电子显微镜对合成材料的结构及物理性能进行了表征. 将合成材料作为锂离子电池正极活性材料, 用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究. 结果表明, 两种方法制备的材料均为纯尖晶石相; SAC法制备的LiNi0.01Co0.01Mn1.98O4颗粒小, 粒径分布均匀, 具有更好的结晶形态. SAC法制备材料在0.1C充放电条件下的初始放电容量为121.2 mAh•g−1, 100次循环后容量损失仅为3.5%, 5C放电的初始放电容量则达到了103.5 mAh•g−1. SAC法的一步工序具有操作简单、成本低廉的优势, 有望实现商业应用.  相似文献   

16.
张欢  其鲁  高学平  杨坤  张鼎 《无机化学学报》2010,26(9):1539-1543
用钛酸纳米管和LiOH溶液进行离子交换法得到了水合钛酸锂前驱体,进而在不同温度热处理制备了Li4Ti5O12。通过X射线衍射(XRD)、扫描电镜(SEM)、热分析(TG-DSC)和恒电流充放电测试对反应产物进行了研究。结果表明所得前驱体在500~700℃热处理可得到纳米结构的纯相Li4Ti5O12。所得Li4Ti5O12的可逆容量约为160mAh·g-1,循环稳定性随热处理温度的提高而增强,并因具有较短的锂离子扩散距离表现出极佳的倍率性能,在1600mA·g-1(约10C)的电流密度下放电下还保持140mAh·g-1的容量。  相似文献   

17.
由110 nm聚苯乙烯(PS)微球组装晶体胶体模板,并用此模板合成三维有序大孔(3-dimensionally ordered macroporous,3DOM)锂离子筛前驱体Li4Ti5O12,用1.0 mol.L-1的盐酸改型制得锂离子筛H4Ti5O12(LiTi-H)。用XRD、SEM、饱和交换容量、pH滴定曲线等表征了材料的形貌、结构和离子交换性能。同时测定了25℃时LiTi-H在0.05 mol.L-1Li+体系吸附锂的动力学数据,并采用吸附动力学Bangham方程和Elovich方程关联离子筛LiTi-H对Li+的离子交换动力学数据。结果表明:PS胶体晶体模板和3DOMLi4Ti5O12锂离子筛前驱体均排列规则有序,大孔直径约90 nm,Li4Ti5O12为尖晶石结构;3DOM Li4Ti5O12酸稳定性好,锂离子筛LiTi-H对Li+具有较高的选择性,对Li+的饱和交换容量达56.70 mg(Li+).g-1;动力学模型用Elovich模型关联较好,离子筛对Li+的离子交换动力学方程是Q=-26.510 4+11.977 4lnt(25℃)。  相似文献   

18.
纳米微晶TiO2合成Li4Ti5O12及其嵌锂行为   总被引:10,自引:1,他引:10  
用溶胶-凝胶法并经热处理制备不同形态和晶体尺寸的TiO2,分别与Li2CO3高温固相反应生成锂钛复合氧化物,经电化学测试发现,用300 ℃热处理所得纳米微晶TiO2制备的Li4Ti5O12具有良好的嵌锂性能,其可逆比容量大于95 mA•h•g-1,充放电效率近100%,循环性能良好,电压平台平稳,在嵌锂至容量≥85%或脱锂至容量≥90%时均有明显的电压变化,可用作锂离子电池负极材料.  相似文献   

19.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

20.
研究了一种制备锂离子电池正极材料Li2FeSiO4的新方法. 采用机械球磨结合微波热处理合成了Li2FeSiO4正极材料. 通过XRD、SEM和恒流充放电测试, 对样品结构、形貌和电化学性能进行了表征和分析. 与传统固相法合成的材料在晶体结构、微观形貌以及充放电性能方面进行了比较. 结果表明, 微波合成法可以快速制备具有正交结构的Li2FeSiO4材料; 在650 ℃时处理12 min, 获得了纯度高、晶粒细小均匀的产物, 该产物具有较高的放电比容量和良好的循环性能. 在60 ℃下以C/20倍率(电流密度, 1C=160 mA·g-1)进行充放电, 首次放电容量为119.5 mAh·g-1, 10次循环后放电容量为116.2 mAh·g-1. 与传统高温固相法相比, 微波合成法制备的材料具有较高的纯度、均匀的形貌和较好的电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号