共查询到20条相似文献,搜索用时 15 毫秒
1.
基于高温固体氧化物电解池(SOEC)的高温蒸汽电解(HTSE)制氢技术作为一种非常有前景的大规模核能制氢新方法, 受到国际上的迅速关注. 但如何控制电解模式下的极化能量损失和性能衰减是HTSE实用化的关键. 本文通过在线电化学阻抗测试技术, 研究了实际运行状态下的单体固体氧化物池(SOC)在电池模式和电解模式下的极化阻抗分布, 阐述了SOEC与高温固体氧化物燃料电池(SOFC)的差异, 确定了SOEC氢电极支撑层水蒸气扩散过程极化损失大是制约电解池制氢性能提高的主要因素. 在此基础上, 采用聚甲基丙烯酸甲酯(PMMA)造孔剂对氢电极支撑层的微观结构进行了调整和优化. 微结构优化后, 氢电极材料的孔隙率提高了50%, 孔隙为规则圆形, 分布均匀, 更利于气体扩散; 电解电压1.3 V时, 单位面积产氢率高达328.1 mL·cm-2·h-1(标准态), 为改进前电解池的2倍, 实现50 h以上连续稳定性运行. 研究成果可为HTSE的实际应用提供一定的理论数据和技术基础. 相似文献
2.
固体氧化物电解池可高效地电解H2O/CO2制备燃料,越来越受到人们的重视. 本文对近年来在燃料电极(阴极)材料方面的研究进展进行了全面综述,指出各种阴极材料的优缺点及发展趋势,强调亟待解决的关键科学与技术问题. 相似文献
3.
利用固体氧化物电解池(Solid oxide electrolysis cell,SOEC)在高温下电解水蒸气制氢,被认为是未来的大规模制氢方法之一.本文采用干压法和丝网印刷法制备了SOEC,考察了氢电极气氛和工作温度对SOEC电解性能的影响,测试了SOEC的稳定性.实验结果表明:氢电极进气中适宜的水蒸气含量为70%~80%;电解池在800,850和900℃,1.50 V的产氢速率分别为89,163和243 N·ml·cm-2·h-1;在900℃以0.33 A·cm-2恒流电解2 h,电解电压的稳定值为0.98 V,并且电解池运行稳定,无明显衰减.阻抗谱解析表明,电极过程是整个电解池电极反应的速度控制步骤. 相似文献
4.
固体氧化物燃料电池(SOFC)和固体氧化物燃料电解池(SOEC)作为新一代的能源转化装置,凭借其清洁、高效的能源转化优势,非常具有技术吸引力。为了将SOFC和SOEC商业化,操作更加持久、高效和经济,中低温的运行温度成为当前国际上研究的主要方向,其中提高氧电极材料的氧还原反应/氧析出反应(ORR/OER)活性是研究的关键。本文主要阐述了原子尺度分子模拟分析和原位实验测试表征对混合离子电子导体氧电极材料中氧迁移规律和传输机理研究的重要作用,推进传统材料向新型氧电极材料和结构的发展;归纳和综述了近期热点的混合离子电子导体(MIEC)氧电极材料、相应的离子传输路径、各向异性结构及晶格动力学;介绍了当前采用的先进研究手段和方法,并重点介绍了原位X射线光电子能谱(XPS)和俄歇电子光谱(AES)探测材料的表面化学组成和结构,原位的方式可以将致密薄膜中几纳米到十几纳米的结构可视化,在原子层面上研究氧电极材料中带电缺陷的形成和迁移;并基于原子尺度的密度泛函理论(DFT)计算和近期分子动力学模拟(MD)的研究进展对传统材料和新型材料中的氧迁移机理进行解释和分析。最后,简要综述了清华大学核研院在固体氧化物池氧电极方面的研究进展。 相似文献
5.
化石燃料的使用排放了大量CO2,对气候和环境造成了日益严重的危害.固体氧化物电解池(SOEC)能够利用可再生能源产生的电能将CO2高效转化成CO,降低CO2排放的同时,又能减少化石燃料的使用,近年来受到研究者的广泛关注.相比于低温液相CO2电还原,SOEC高的运行温度保证了其较高的反应速率,即较高的电流密度.典型的SOEC单电池由多孔阴极、致密电解质和多孔阳极以三明治的方式组装而成.CO2分子在阴极得到两个电子解离成CO和一个O2–;生成的O2–通过致密电解质传导至阳极,在阳极失去四个电子发生析氧反应(OER)生成一个O2.相比于两电子的阴极反应,阳极四电子的析氧反应更难进行,可能是整个电极过程的速控步,因此开发高性能的阳极材料有望显著提高SOEC的CO2电还原性能.La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的CeO2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd0.2Ce0.8O1.9(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10 wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800 oC和1.6 V的电流密度为0.555 A cm–2,是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20 wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O2-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能. 相似文献
6.
利用太阳能、风能等可再生清洁电能将CO2催化转化为高附加值化学品或燃料,在CO2转化和可再生电能存储方面表现出极具潜力的应用前景.高温固体氧化物电解池(SOEC)可将CO2电催化还原为CO,具有能量效率高、成本低等优点.目前,钙钛矿氧化物已被广泛应用于SOEC电解CO2的阴极材料,但存在电极催化活性低等问题,因而限制其规模化发展和应用.通常采用浸渍、原位溶出或掺杂等策略引入大量活性中心以提升钙钛矿氧化物电极性能.然而,这些策略仍然面临一些挑战,如浸渍法易引入大颗粒物种而堵塞气体传输通道,原位溶出法能耗较大且析出量较少,掺杂法调控活性幅度有限.因此,发展新型简便方法以合理构建具有高度分散活性位点的阴极材料,可有效拓展电化学三相反应界面,进而加快SOEC高温电解CO2的电极动力学速率.本文采用机械研磨法将1.0%NiO高度分散于La0.8Sr0.2Fe03-δ-Ce0.8Sm0.2 相似文献
7.
近年来固体氧化物燃料电池(SOFCs)由于高效率(高达80%)、环境友好和燃料适用广泛等优点得到了人们的广泛关注。但是,由于其通常需要1000 ℃以上的工作温度才能达到所需的性能,其商业化及产业化应用受到了严重制约。中低温固体氧化物燃料电池(IT-SOFCs)的研发是固体氧化物燃料电池进一步商业化的必然趋势。降低工作温度(从高温1000 ℃以上降低至中低温500~800 ℃)可提高燃料电池的稳定性、降低电池运行成本、增加系统材料可选性,而研发出中低温下性能优异的燃料电池电极材料是实现固体氧化物燃料电池中低温化的关键。作为混合离子-电子导体材料之一,双钙钛矿型氧化物材料可以成功地将燃料反应活性区域从传统的电极-电解质-反应气体三相界面扩展到整个电极的表面, 进而降低材料的极化电阻并大大提高电极在中低温条件下对氧的催化活性。由于双钙钛矿结构材料良好的氧离子传输能力、较低的热膨胀系数、优异的催化活性、较强的抗硫中毒和抗碳沉积能力,近年来成为非常有发展潜力的SOFCs电极材料。本文综述双钙钛矿型氧化物材料作为SOFCs电极材料的最新研究进展,指出目前双钙钛矿电极材料存在的主要问题,并提出SOFCs未来的主要研究发展方向。 相似文献
8.
Ba0.5Sr0.5Co0.8Fe0.2O3-δ为阴极的中温固体氧化物燃料电池 总被引:1,自引:0,他引:1
通过在阴极与氧化钇稳定的氧化锆电解质间添加Gd0.1Ce0.9O1.95 (GDC)隔层,成功地将Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)阴极应用在中温固体氧化物燃料电池上. 由BSCF膜的高透氧率可知,BSCF在中温范围内具有很高的氧离子电导率. 在添加GDC隔层后,电池以空气为氧化剂时显示了很高的性能,极化电阻急剧下降,表明GDC隔层的添加是必要和有效的. 相似文献
9.
合成了(La0.8M0.2)MnO3(M=Ca2+,Sr2+,Ba2+)和(La0.8Sr0.2)(Mn1-xFex)O3(x=0.1、0.2、0.3、0.4、0.5)两类氧化物,经XRD确认为钙铁矿型氧化物,应用FT-IR对其进行研究,对主要的红外特征振动υ(Mn-O)和δ(O-Mn-O)进行分析表征。这类化合物的υ(Mn-O)和δ(O-Mn-O)的FT-IR特征吸收峰十分相似,但在~608cm-1处出现较大差别,以Sr2+、Ca2+和Ba2+部分A位取代La3+的钙铁矿型氧化物和B位Fe取代Mn时,由于离子的溶解能不同,对晶格的有序排列的影响程度不一,导致了Mn-O键的键力场不同,引起了吸收峰向低波数移动。这种结构上的差异,导致对汽车尾气中的有害成份碳氢化合物(HC)和一氧化碳(CO)的催化氧化能力降低。借此可以用于研究结构与催化性能的关系。 相似文献
10.
11.
应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池.实验表明,在750 oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452Ω·cm2).由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值. 相似文献
12.
类钙钛矿化合物(La0.8-xCexSr0.2)0.97MnO3的电磁性能研究 总被引:1,自引:1,他引:1
探索性地研究了由内含不同程度CeO2的廉价原料--La2O3制备的, 名义成分为 ( La0.8-xCex Sr0.2)0.97MnO3 (x=0~0.26) 类钙钛矿锰氧化物的相结构、电磁性能, 及其作为固体氧化物燃料电池(SOFC)空气极材料的可能性. 实验显示, 样品中除了磁性的钙钛矿相外, 均出现了非磁性的Mn3O4相和不同程度的CeO2相;随着制备样品的原材料La2O3纯度的不同, 样品的电阻率、磁电阻比等电磁特性也随之发生明显的变化;样品在1 T磁场下的室温磁电阻比的范围可达-3%~-14%;对x=0, 0.037, 0.26的样品, 其电导率在600 K以上高温区均表现出较好的温度稳定性, 表明其作为SOFC空气极材料的可行性. 相似文献
13.
钙钛矿型La0.8Sr0.2FeO3中的晶格氧用于甲烷选择氧化制取合成气 总被引:5,自引:0,他引:5
用自燃烧法制备了钙钛矿型La0.8Sr0.2FeO3催化剂.用H2-TPR考察了催化剂表面的氧消耗过程,用程序升温表面反应(TPSR)研究了甲烷与催化剂表面氧物种的反应,用在线质谱脉冲反应和甲烷/氧切换反应研究了催化剂的晶格氧选择氧化甲烷制合成气.结果表明,催化剂上存在两种氧物种,无气相氧存在时,强氧化性氧物种首先将甲烷氧化为CO2和H2O;而后提供的氧化性较弱的晶格氧具有良好的甲烷部分氧化选择性,可将甲烷氧化为合成气CO和H2(选择性可达95%以上).在900℃下的CH4/O2切换反应结果表明,甲烷能与La0.8Sr0.2FeO3中的晶格氧反应选择性地生成CO和H2,失去晶格氧的La0.8-Sr0.2FeO3能与气相氧反应恢复其晶格氧.在合适的反应条件下,用La0.8Sr0.2FeO3催化剂的晶格氧代替分子氧按Redox模式实现甲烷选择氧化制合成气是可能的. 相似文献
14.
研究了新型固溶法合成La0.8Sr0.2MnO3(LSM)包覆Ba0.5Sr0.5Co0.8Fe0.2O3(BSCF)复合粉体(LSM-BSCF),并探讨了其作为中温固体氧化物燃料电池阴极材料的电化学性能.LSM-BSCF阴极结合了LSM和BSCF阴极的优点,不仅增大了三相界面,而且稳定了微观结构.当温度为600儃750°C时,其极化阻抗为0.61儃0.09Ω·cm2.与溶液注入法制备的高性能电极相比,极大地提高了性能稳定性. 相似文献
15.
BaCe_(0.8)Y_(0.2)O_(3-α)固体电解质的离子导电性及其燃料电池性能 总被引:1,自引:0,他引:1
用高温固相反应合成了BaCe0.8Y0.2O3-α固体电解质用氢浓差电池和氧浓差电池方法研究了它的离子导电特性。以该氧化物为固体电解质多孔性Pt为电极材料组成氢空气燃料电池测定了该燃料电池的电流电压特性。研究发现BaCe0.8Y0.2O3-α在氢气中几乎是一个纯的质子导体在氧气中是一个氧离子和电子空穴的混合导体其燃料电池的开路电压OCV接近于理论值最大输出电流密度约为820mA·cm-21000℃最大输出功率密度约为200mW·cm-21000℃放电性能稳定具有良好的电池性能。 相似文献
16.
用涂覆加压成型方法制备了具有钙钛矿结构的 La1 - x Srx Co O3多孔气体扩散电极 ,测定了它们的稳态阴极极化曲线和循环伏安图谱。通过对多孔铂电极与 La1 - x Srx Co O3多孔气体扩散电极的相关曲线的对照分析 ,得出了L a1 - x Srx Co O3在碱性条件下 ,具有比铂更好的氧还原催化活性的结论。并计算出 L a1 - x Srx Co O3多孔电极的表观交换电流密度 i0 =7.6 8× 1 0 - 4 A/cm2 ,比同样条件下的铂电极的 i0 高 3~ 4个数量级。 相似文献
17.
化石燃料的使用排放了大量CO_2,对气候和环境造成了日益严重的危害.固体氧化物电解池(SOEC)能够利用可再生能源产生的电能将CO_2高效转化成CO,降低CO_2排放的同时,又能减少化石燃料的使用,近年来受到研究者的广泛关注.相比于低温液相CO_2电还原,SOEC高的运行温度保证了其较高的反应速率,即较高的电流密度.典型的SOEC单电池由多孔阴极、致密电解质和多孔阳极以三明治的方式组装而成.CO_2分子在阴极得到两个电子解离成CO和一个O_2~-;生成的O_2-通过致密电解质传导至阳极,在阳极失去四个电子发生析氧反应(OER)生成一个O_2.相比于两电子的阴极反应,阳极四电子的析氧反应更难进行,可能是整个电极过程的速控步,因此开发高性能的阳极材料有望显著提高SOEC的CO_2电还原性能.La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的Ce O2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd_(0.2)Ce_(0.8)O_(1.9)(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10 wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800 oC和1.6V的电流密度为0.555 A cm~(-2),是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20 wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O_2~-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能. 相似文献
18.
固体电解质是指固体状态下具有较高电导率的离子导体,根据其传导离子所带电荷分为阳离子导体(如:Na+,Li+,H+等)和阴离子导体(如:F-,Cl-,O2-等)。固体电解质与液体电解质不同之处为:(1)是固态;(2)电荷载流子通常只有一种;(3)由于晶格能较大,通常在较高温度下离子才能迁移。具有实用价值的固体电解质的电导率一般在10-3S·cm-1以上,同时要求其离子迁移数要足够大。至今,已发现和合成了上百种固体电解质材料。在加速研制绿色化学电源、寻找高离子电导率、高化学稳定性、低成本的固体氧化物燃料电池(SOFC)固体电解质的研究中,ABO3钙钛矿型… 相似文献
19.
钙钛矿型La_((1 x)/2)Sr_((1-x)/2)Co_(1-x)Cu_xO_3催化CO氧化活性与表征 总被引:1,自引:0,他引:1
研究了钙钛矿型LaSrCoCu_xO_3催化剂对CO氧化反应的催化活性及其表面氧的催化作用.结果表明,x=0.4的催化剂对CO氧化具有最高催化活性,常压及本实验条件下CO完全氧化的最低温度为168℃;催化剂均为氧缺陷化合物,吸附于表面晶格氧缺陷上的吸附氧是CO氧化反应的活性氧物种;并发现催化剂中存在有非常价态的C04 ,认为CO氧化反应是通过吸附氧调变Co3 和Co4 价态而进行. 相似文献
20.
钙钛矿型ABO_3复合氧化物具有良好的热稳定性、催化性能、磁性、导电性以及传感等性质~([1-5]).目前钙钛矿结构复合氧化物以其优异的性能已成为光催化领域的研究热点之一~([6-9]).在钙钛矿型ABO_3复合氧化物中,A位金属可以起到稳定结构的作用,而B位金属为活性位.但是,当B位金属相同A位金属不同的一类钙钛矿型氧化物作为催化剂时,影响其光催化活性的主要因素很少见文献报道. 相似文献