首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New hybrid methods for approximating the Pareto frontier of the feasible set of criteria vectors in nonlinear multicriteria optimization problems with nonconvex Pareto frontiers are considered. Since the approximation of the Pareto frontier is an ill-posed problem, the methods are based on approximating the Edgeworth-Pareto hull (EPH), i.e., the maximum set having the same Pareto frontier as the original feasible set of criteria vectors. The EPH approximation also makes it possible to visualize the Pareto frontier and to estimate the quality of the approximation. In the methods proposed, the statistical estimation of the quality of the current EPH approximation is combined with its improvement based on a combination of random search, local optimization, adaptive compression of the search region, and genetic algorithms.  相似文献   

2.
3.
4.
5.
6.
In this paper a nonlinear method for the acceleration of multidimensional sequences {Sk} is described. The method is developed by generalising a connection between the ε-algorithm and Padé approximants. A convergence result and an application to the numerical calculation of multiple integrals are briefly discussed.  相似文献   

7.
Methods for approximating the Edgeworth-Pareto hull (EPH) of the set of feasible criteria vectors in nonlinear multicriteria optimization problems are examined. The relative efficiency of two EPH approximation methods based on classical methods of searching for local extrema of convolutions of criteria is experimentally studied for a large-scale applied problem (with several hundred variables). A hybrid EPH approximation method combining classical and genetic approximation methods is considered.  相似文献   

8.
A method is presented for generating a well-distributed Pareto set in nonlinear multiobjective optimization. The approach shares conceptual similarity with the Physical Programming-based method, the Normal-Boundary Intersection and the Normal Constraint methods, in its systematic approach investigating the objective space in order to obtain a well-distributed Pareto set. The proposed approach is based on the generalization of the class functions which allows the orientation of the search domain to be conducted in the objective space. It is shown that the proposed modification allows the method to generate an even representation of the entire Pareto surface. The generation is performed for both convex and nonconvex Pareto frontiers. A simple algorithm has been proposed to remove local Pareto solutions. The suggested approach has been verified by several test cases, including the generation of both convex and concave Pareto frontiers.  相似文献   

9.
10.
In a recent work, we have proposed a new iterative method based on the eigenfunction expansion to integrate nonlinear parabolic systems sequentially. In this paper, we prove that the method is convergent and give analytical rate for its convergence. Moreover, we determine the number of iterations needed to obtain a solution with a pre-determined level of accuracy. We then illustrate the convergence analysis with a problem in combustion theory. It is expected that the convergence analysis can be used for similar systems with time dependence.  相似文献   

11.
12.
13.
The trend of applying mathematical foundations of fractional calculus to solve problems arising in nonlinear sciences, is an emerging area of research with growing interest especially in communication, signal analysis and control. In the present study, normalized fractional adaptive strategies are exploited for automatic tuning of the step size parameter in nonlinear system identification based on Hammerstein model. The brilliance of the methodology is verified by mean of viable estimation of electrically stimulated muscle model used in rehabilitation of paralyzed muscles. The dominance of the schemes is established by comparing the results with standard counterparts in case of different noise levels and fractional order variations. The results of the statistical analyses for sufficient independent runs in terms of Nash-Sutcliffe efficiency, variance account for and mean square error metrics validated the consistent accuracy and reliability of the proposed methods. The proposed exploitation of fractional calculus concepts makes a firm branch of nonlinear investigation in arbitrary order gradient-based optimization schemes.  相似文献   

14.
This paper presents a method for solving nonlinear system with singular Jacobian at the solution. The convergence rate in the case of singularity deteriorates and one way to accelerate convergence is to form bordered system. A local algorithm, with finite-difference approximations, for forming and solving such system is proposed in this paper. To overcome the need that initial approximation has to be very close to the solution, we also propose a method which is a combination of descent method with finite-differences and local algorithm. Some numerical results obtained on relevant examples are presented.  相似文献   

15.
Solving a large subset of multidimensional nonlinear optimization problems can be significantly improved by decoupling their intrinsically linear and nonlinear parts. This effectively decreases the dimensionality of the problem, reduces the search space and improves the efficiency of the optimization. This decoupled approach is generalized with mathematical formalism and its superiority over standard methods empirically verified and quantified on a couple of examples involving \(\chi ^2\) curve fitting to data.  相似文献   

16.
17.
In this paper, we propose a non-monotone line search multidimensional filter-SQP method for general nonlinear programming based on the Wächter–Biegler methods for nonlinear equality constrained programming. Under mild conditions, the global convergence of the new method is proved. Furthermore, with the non-monotone technique and second order correction step, it is shown that the proposed method does not suffer from the Maratos effect, so that fast local convergence to second order sufficient local solutions is achieved. Numerical results show that the new approach is efficient.  相似文献   

18.
For the solution of nonlinear equations, we present an adaptive wavelet scheme, which couples an inexact Newton method and the idea of nonlinear wavelet approximation. In particular, we obtain a result of quadratic convergence.  相似文献   

19.
Summary In this paper we describe and analyse a numerical method that detects singular minimizers and avoids the Lavrentiev phenomenon for three dimensional problems in nonlinear elasticity. This method extends to three dimensions the corresponding one dimensional method of Ball and Knowles.  相似文献   

20.
In this article, a novel Adaptive Fuzzy Sliding Mode Control (AFSMC) methodology is proposed based on the integration of Sliding Mode Control (SMC) and Adaptive Fuzzy Control (AFC). Making use of the SMC design framework, we propose two fuzzy systems to be used as reaching and equivalent parts of the SMC. In this way, we make use of the fuzzy logic to handle uncertainty/disturbance in the design of the equivalent part and provide a chattering free control for the design of the reaching part. To construct the equivalent control law, an adaptive fuzzy inference engine is used to approximate the unknown parts of the system. To get rid of the chattering, a fuzzy logic model is assigned for reaching control law, which acting like the saturation function technique. The main advantage of our proposed methodology is that the structure of the system is unknown and no knowledge of the bounds of parameters, uncertainties and external disturbance are required in advance. Using Lyapunov stability theory and Barbalat’s lemma, the closed-loop system is proved to be stable and convergence properties of the system is assured. Simulation examples are presented to verify the effectiveness of the method. Results are compared with some other methods proposed in the past research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号