首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
通过大分子引发剂ω-胺基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和酸性水解制备了一种具有pH-响应性的三嵌段共聚物聚乙二醇-聚谷氨酸-聚丙氨酸(mPEG-PLGA-PLAA).通过核磁共振、ζ-电势、动态光散射、电子显微镜等手段表征了此类三嵌段共聚物的自组装过程及所形成胶束的pH-响应性.使用圆二色谱和红外光谱,分析了胶束结构随环境pH值转变过程中聚氨基酸链段二级结构的变化.以阿霉素作为模型药物,研究了三嵌段共聚物的载药能力和在不同pH条件下的药物释放能力.在碱性条件下,PLGA链段去质子化,链段从疏水性变为亲水性,胶束中间层由于水合作用变得松散,药物释放速率增加;在酸性条件下,PLGA链段质子化,不带电荷,与阿霉素药物分子间的静电相互作用消失.同时,PLGA链段α-螺旋含量增加,形成由链内氢键维持的刚性棒状结构,将链段周围包埋的药物分子"挤出",加速了药物的释放.  相似文献   

2.
通过大分子引发剂ω-氨基-α-甲氧基聚乙二醇引发N-羧基-α-氨基环内酸酐开环聚合和水合肼侧基改性,制备了一系列聚乙二醇-聚氨基酸类三嵌段共聚物.其中聚氨基酸链段包括具有酰肼基的聚天冬氨酸衍生物(PAHy),以及疏水性的聚丙氨酸链段.引入具有pH响应性的腙键键合阿霉素,利用键合阿霉素与游离阿霉素之间的π-π叠合作用,在聚合物自组装形成胶束过程中通过化学键合+物理包埋的方式充分负载药物.该胶束以聚丙氨酸链段为核心,以PEG链段为冠层,以PAHy链段为包裹药物的壳层.载药胶束的粒径在170 nm左右.研究不同pH值条件下载药胶束的药物释放能力,随环境pH值的降低药物的释放速率显著增加.  相似文献   

3.
采用可逆加成-断裂链转移(RAFT)聚合法,以丙烯酸(AA)、丙烯酸异丁酯(IBA)无规共聚物与聚丙烯酸-2-羟丙酯(PHPA)反应,制备了具有pH敏感性的两亲性嵌段共聚物(P(IBA-co-AA)-b-PHPA).用红外光谱(FTIR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)对其结构进行表征.此共聚物在水溶液中可自组装形成胶束,临界胶束浓度约为2.0mg/L.由透射电子显微镜(TEM)、动态光散射(DLS)表征可知胶束为尺寸约100nm的球形颗粒;用DLS观察到胶束粒径随pH值的升高而逐渐增大.以抗癌药物紫杉醇为模型药物,研究载药胶束在模拟人体环境中的控释行为.用CellCountingKit-8(简称CCK-8)法分别研究聚合物胶束对MCF-7人乳腺癌细胞和A549人肺癌细胞的细胞毒性,并评价载药胶束在两细胞中的抗癌效果.结果表明,P(IBA-co-AA)-b-PHPA可作为包载紫杉醇的一种新型纳米材料,载药胶束的体外释放呈明显pH依赖性,且具有较好的体外抗肿瘤活性,有望成为理想的抗肿瘤药物载体.  相似文献   

4.
以溴代异丁酰溴与3,5-二羟基苯甲酸制备3,5-二(2-溴-2丙酰氧基)苯甲酸,再与聚乙二醇单甲醚酯化,合成含溴大分子引发剂PEG-Br2。以苯乙烯为单体,利用原子转移自由基聚合方法(ATRP)合成了两种不同亲疏水段比例的两亲性星型杂臂嵌段共聚物PEG-b-(PS)2。本实验利用FTIR、1H-NMR、GPC等技术对聚合物的分子结构及分子量进行表征,利用透析法制备聚合物胶束;采用AFM对聚合物胶束的纳米结构进行观察;采用荧光探针法测得其临界胶束浓度(CMC)分别为0.99 mg·L-1和0.59 mg·L-1;利用DLS测得聚合物胶束粒径为150 nm左右;以疏水型抗肿瘤药物氨甲喋呤(MTX)为模型药物,对载药胶束的体外释药行为进行了研究,测得聚合物胶束的载药量分别为为13.32%和10.00%,包封率分别为61.75%和46.82%。结果表明,随着疏水段的增大,星型杂臂嵌段共聚物胶束药物包载量及CMC随之降低,且在人体pH条件下药物释放较低;同时发现两种载药胶束在肿瘤细胞酸性条件下释药速率增加。综上,此类结构的聚合物胶束作为抗肿瘤药物MTX的载体分子具有很好的应用前景。  相似文献   

5.
首先制备端氨基聚(N-异丙基丙烯酰胺-co-聚乙二醇)大分子引发剂,再通过端氨基引发L-谷氨酸-γ-苄酯-N-羧酸酐开环聚合,制备了聚(N-异丙基丙烯酰胺-co-聚乙二醇)与聚(L-谷氨酸-γ-苄酯)的嵌段共聚物,将其中的γ-苄酯基团转化为酰肼基团后与阿霉素(DOX)共价结合,最后在水溶液中自组装成纳米胶束,制备了温度和pH值双重响应性纳米胶束。胶束外层由亲水性聚(N-异丙基丙烯酰胺-co-聚乙二醇)组成,具有温敏性,低临界溶液温度为38℃;胶束内层由聚(L-谷氨酸-γ-酰肼-阿霉素)组成。该胶束对于药物的释放具有温度和pH双重敏感性。  相似文献   

6.
以甘油酸为单体,通过本体缩聚制备了水溶性生物降解高分子聚甘油酸,利用聚甘油酸侧基上的羟基固定生物相容性好的疏水性分子胆固醇,通过亲疏水作用自组装形成胶束.以形成的胶束作为载体负载抗肿瘤药物阿霉素,研究了药物的体外释放行为.将肝癌细胞HepG2与载药胶束共培养研究其体外抗肿瘤效果.研究结果表明,聚甘油酸-g-胆固醇共聚物...  相似文献   

7.
杨卓理  李馨儒  杨可伟  刘艳 《化学学报》2007,65(19):2169-2174
合成了一系列亲水、疏水链段质量比例不同的聚乙二醇-聚乳酸(PEG-PLA)嵌段共聚物胶束, 并以两性霉素B为模型药物制备了载药胶束. 为获得稳定性良好的、可长期储存的载药胶束剂型, 对胶束进行了冷冻干燥. 使用不同浓度的糖类(包括甘露糖、海藻糖、葡萄糖)、泊洛沙姆188 (Pluronic F68)、聚乙二醇作为冻干保护剂, 以冻干产品的重分散性、冻干前后胶束的粒径及多分散性为指标评价各种保护剂的保护效果. 结果发现, 当嵌段聚合物中聚乳酸链段的质量百分比小于或等于聚乙二醇时, 糖类、Pluronic F68和PEG均可以起到有效的冻干保护作用; 而对于聚乳酸链段质量比例较大的共聚物胶束, 只有PEG和Pluronic F68能够起到较好的冻干保护作用. 对载药胶束体外释放研究表明, 聚合物胶束的体外释放缓慢, 符合一级动力学特征.  相似文献   

8.
温度敏感性双亲嵌段共聚物由于其潜在的应用价值而引起广泛的关注。在药物控制释放领域,基于温敏性嵌段共聚物的纳米胶束作为药物载体显示了诸多特异的性能。在嵌段共聚物中引入具有温度敏感性的链段,使聚合物胶束具备天然被动靶向功能的同时,赋予了其主动靶向给药功能。本文从温度敏感性双亲嵌段共聚物的分子设计、合成、自组装性质和胶束的载药释药行为等方面进行了相关总结。重点介绍了含聚N-异丙基丙烯酰胺链段双亲嵌段共聚物的相关研究进展。  相似文献   

9.
利用原子转移自由基聚合方法(ATRP)合成了pH敏感的两亲性嵌段共聚物mPEG-b-PDPAn(聚合度n=100-200)及荧光修饰的嵌段聚合物异硫氰酸荧光素-聚乙二醇-聚N,N-二异丙胺基甲基丙烯酸乙酯(FITCPEG45-PDPA100)。采用溶剂挥发的方法制备胶束,此胶束呈现均一的球形分布,平均粒径180-240 nm(0.3 mg·mL-1)。以阿霉素(DOX)为模拟药物,其胶束载药量约11%(w,质量分数)左右,外环境pH对载药胶束的粒径和体外释放行为有显著影响。在弱酸环境下,胶束核质子化发生膨胀甚至解体,在2-3 h内药物可释放80%左右。体外毒性试验表明,空白胶束与人类肝癌细胞(Huh7)有良好的生物相容性。同时,与此细胞共同孵育5 h的荧光聚合物胶束体现了较好的转染效果。因此,这类荧光标记胶束可能会为实时跟踪化疗药物的输送或分布打开新的视角。  相似文献   

10.
设计合成了一种新型两亲性三嵌段ABC聚合物聚乙二醇单甲醚-聚甲基丙烯酸二异丙胺基乙酯-聚(丙烯酰胺-co-丙烯腈)(mPEG-PDPA-P(AAm-co-AN))。该聚合物具有pH敏感嵌段PDPA和温度敏感嵌段P(AAm-co-AN),临界溶解温度(UCST)较高,且可以通过改变单体比例来调节UCST。在室温、中性环境下,该聚合物通过自组装形成刺激响应型胶束,可用于抗肿瘤药物的控释研究。温度升高诱导聚合物胶束向不对称囊泡结构转变,pH降低促使聚合物形成更加松散的胶束。在体外释药探究中,聚合物胶束对亲水药物阿霉素(DOX)和疏水药物槲皮素都具有良好的载药效果,在37℃、pH=7.4的条件下泄漏量低,随着温度升高和pH降低,胶束释放药物的速率和释放量明显增加。  相似文献   

11.
Amphiphilic dendritic poly(glutamic acid)-b-polyphenylalanine copolymers were synthesized using generation 3 dendritic poly(glutamic acid) as the macroinitiator in the ring-opening polymerization of NCA-Phe.The block copolymers self-assembled micelles with polyphenylalanine segments as core and dendritic poly(glutamic acid) segments as shell.The biocompatibility of the micelles was studied.The release of the anticancer drug doxorubicin from the micelles was investigated in vitro.The results showed that the ...  相似文献   

12.
In this study, with the aim of designing an ideal anticancer drug carrier, we synthesized novel amphiphilic graft copolymers, P(Glu-alt-PEG)-graft-PCLA, based on poly(ethylene glycol) (PEG) segments and glutamic acid (Glu) units as the hydrophilic main chain, and poly(?-caprolactone-co-lactide) (PCLA) as hydrophobic branches. The chemical structure of the copolymers was characterized by (1)H MNR and FT-IR. The self-assembly of the copolymers to form micelles was studied by TEM, DLS and fluorescence spectroscopy. In vitro doxorubicin controlled release studies demonstrated that these graft copolymer micelles had high drug loading capacity and good controlled released properties, demonstrating their potential as a novel anticancer drug carrier. The drug loaded graft copolymer micelles exhibited efficient inhibition of HeLa cells in in vitro studies.  相似文献   

13.
Two thermo- and pH-sensitive polypeptide-based copolymers, poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-poly(L-lysine) (P(NIPAAm-co-HMAAm)-b-PLL, P1) and poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide)-b-poly(glutamic acid) (P(NIPAAm-co-HMAAm)-b-PGA, P2), have been designed and synthesized by the ring-opening anionic polymerization of N-carboxyanhydrides (NCA) with amino-terminated P(NIPAAm-co-HMAAm). It was found that the block copolymers exhibit good biocompatibility and low toxicity. As a result of electrostatic interactions between the positively charged PLL and negatively charged PGA, P1 and P2 formed polyion complex (PIC) micelles consisting of polyelectrolyte complex cores and P(NIPAAm-co-HMAAm) shells in aqueous solution. The thermo- and pH-sensitivity of the PIC micelles were studied by UV/Vis spectrophotometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Moreover, fluorescent PIC micelles were achieved by introducing two fluorescent molecules with different colors. Photographs and confocal laser scanning microscopy (CLSM) showed that the fluorescence-labeled PIC micelles exhibit thermo- and pH-dependent fluorescence, which may find wide applications in bioimaging in complicated microenvironments.  相似文献   

14.
Amphiphilic copolymers were obtained by grafting arborescent poly(γ‐benzyl l ‐glutamate) (PBG) cores of generations G1–G3 with polyglycidol, poly(ethylene oxide) (PEO), or poly(l ‐glutamic acid) (PGA) chain segments. The PBG substrates were synthesized by two methods: (1) subjecting PBG samples with a dispersity ? = Mw/Mn < 1.1 to partial acidolysis of the benzyl ester groups, to produce randomly distributed carboxylic acid functionalities, and (2) using PBG chains containing a glutamic acid di‐tert‐butyl ester initiator fragment in the last grafting cycle of the PBG core synthesis, and selective acidolysis of the tert‐butyl ester groups to obtain substrates with carboxylic acid termini. Linear polymers with ? < 1.20 and a primary amine terminus were also synthesized to serve as hydrophilic shell materials: Polyglycidol and PEO by anionic polymerization, and PGA by N‐carboxyanhydride ring‐opening polymerization. These polymers, combined with the two different PGB substrate types, allowed the evaluation of the usefulness of random versus chain‐end grafting in producing arborescent copolymers useful as unimolecular micelles in organic and aqueous media. Size exclusion chromatography served to determine the grafting yield, molar mass, dispersity, and branching functionality of the copolymers. Dynamic light scattering measurements provided information on their aggregation behavior in aqueous environments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1197–1209  相似文献   

15.
Photocrosslinked nanogels with a hydrophobic core and hydrophilic shell are successfully fabricated with the goal of obtaining a biocompatible and biodegradable drug carrier for hydrophobic anticancer drugs. These nanogels are composed of amphiphilic triblock copolymers, poly(D,L-lactic acid)/poly(ethylene glycol)/poly(D,L-lactic acid) (PLA-PEG-PLA), with acrylated groups at the end of the PLA segments. The copolymers are synthesized by ring-opening polymerization and possess a low CMC (49.6 mg x L(-1)), which easily helps to form micelles by self-assembly. The acrylated end groups allow the micelles to be photocrosslinked by ultraviolet irradiation, which turn the micelles into nanogels. These nanogels exhibit excellent stability as a suspension in aqueous media at ambient temperature as compared to the micelles. Moreover, the size of the nanogels is easily manipulated in a range of 150 to 250 nm by changing the concentration of crosslinkers, e.g., ethylene glycol dimethacrylate, and ultraviolet light irradiation time. The nanogels achieve a high encapsulation efficiency and offer a steady and long-term release mechanism for the hydrophobic anticancer drug, CPT. It shows that these nanogels are useful for a hydrophobic anticancer drug-carrier system. [pictures: see text] Formation of the PLA-PEG-PLA nanogels.  相似文献   

16.
Soft tissues, such as fat and skin, present high flexibility and are capable of withstanding large deformation in various functions. Hydrogels that can resemble the mechanical performance of soft tissue are unique and widely demanded. In this study, micellar hydrogels based on biocompatible poly(l ‐glutamic acid) (PLGA) were designed with the enhanced capacity to bear large deformation. Amphipathic triblock copolymer poly(ethylene glycol) acrylate‐co‐poly(ε‐caprolactone)‐co‐poly (ethylene glycol) acrylate (APEG‐PCL‐APEG) with two terminal double bonds was synthesized and self‐assembled into micelles. At the same time, graft copolymers, poly(l ‐glutamic acid)‐g‐hydroxyethyl methacrylate (PLGA‐g‐HEMA) with double bonds were synthesized. APEG‐PCL‐APEG micelles and PLGA‐g‐HEMA were mixed to construct micellar hydrogel via radical polymerization. The crystalline structure and hydrophobic aggregation of copolymers (APEG‐PCL‐APEG) were found to associate with PCL molecular weight. Due to the hydrophobic stress dissipation and crystalline structure of the micelles, the softness and toughness of hydrogels were promoted, exhibiting a 25% increase in ultimate strain. Moreover, the micellar hydrogels were able to load proteins with long‐term retention. In addition, under dynamic mechanical stimulation, the release of proteins could be accelerated. Besides, the micellar hydrogels also supported rabbit adipose‐derived stem cells (rASCs) growth, thus exhibiting the potential toward soft tissue engineering. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1115–1125  相似文献   

17.
《中国化学快报》2020,31(5):1173-1177
Nanomaterials as drug carriers hold promise for the treatment of carcinomas, but integrating multiple functions into a single vector is difficult. In this study, we aim to develop efficient materials as vectors for co-delivery of microRNA-122 (miR-122) and sorafenib (SRF). We successfully synthesized amphiphilic galactose-modified PEGylated poly(amino-co-ester) (Gal-PEG-PPMS) copolymers consisted of hydrophilic Gal-PEG5k chain segments and hydrophobic poly(ω-pentadecalactone-co-N-methyldiethyleneamine-co-sebacic acid) chain segments, which self-assembled to form cationic micelles at pH 5.2. The results showed that the micelles could encapsulate SRF and bind miR122 simultaneously, increase cellular uptake efficiency. Furthermore, the micelles showed favorable transfection efficiency in enhancing miR122 expression level, the migration and invasion ability of hepatocellular carcinoma (HCC) cells were significantly inhibited after being transfected with miR122-loaded micelles. Most importantly, the co-delivery micelles decreased cell activities of HepG2 cells, which was more effective than miR122 or SRF loaded micelles alone. Collectively, Gal-PEG-PPMS nanoparticles are promising multifunctional carriers for miR122 and SRF co-delivery system to treat HCC.  相似文献   

18.
Self‐assembly of amphiphilic ABA random triblock copolymers in water serves as a novel approach to create unique structure micelles connected with flexible linkages. The ABA triblock copolymers consist of amphiphilic random copolymers bearing hydrophilic poly(ethylene glycol) and hydrophobic dodecyl pendants as the A segments and a hydrophilic poly(ethylene oxide) (PEO) as the middle B segment. The A block is varied in dodecyl methacrylate content of 20%–50% and degree of polymerization (DP) of 100‐200. By controlling the composition and DP of the A block, various architectures can be tailor‐made as micelles in water: PEO‐linked double core unimer micelles, PEO‐looped unimer or dimer micelles, and multichain micelles. Those PEO‐linked or looped micelles further exhibit thermoresponsive solubility in water. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 313–321  相似文献   

19.
Amphiphilic block copolymers,poly(ethylene oxide)-b-poly(N-acryloxysuccinimide) (PEO-b-PNAS) with various molecular weights have been successfully synthesized by atom transfer radical polymerization (ATRP) of NAS using functionalized PEO (PEO-Br) as ATRP macroinitiator.The self-assembling of the block copolymers in water,which is a good solvent for PEO and a non-solvent for PNAS.yielded spherical core-shell micelles with PNAS as core and PEO as shell.The cross-linked reaction of oxysuccinimide in PNAS ch...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号