首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Monolithic gels, prepared from different mixtures of colloidal silica in a sol solution containing tetraethoxysilane under powerful ultrasonic agitation (sonosols), were compacted at an isostatic pressure of 390 MPa. Then N2 adsorption-desorption data were used to construct structural models of the gels using Monte-Carlo calculations on the basis of random close-packing (RCP) premises. Structural information on these composites obtained before compaction indicates that the characteristic uniform structure of silica colloid gel undergoes profound modification when it is mixed with silica sonogel. From a structural point of view, the behaviour under compaction of the sonogel phase, which exhibits a significant degree of microporosity, depends on the relative concentration of the colloidal phase. Two hierarchic levels of micropores were discerned. After compression, the size of the elementary particles—and their aggregates—of the sonogel phase increases from 1.6 to 2.1 nm radius when the colloidal phase content is increased from 30 to 82% by weight. For an intermediate content, 50% of the volume reduction is caused by compression of the sonogel phase at the micropore level.  相似文献   

2.
This paper describes a method for fabricating spherical submicron-sized silica particles that contained magnetite nanoparticles (magnetite/silica composite particles). The magnetite nanoparticles with a size of ca. 10 nm were prepared according to the Massart method, and were surface-modified with carboxyethylsilanetriol. The fabrication of magnetite/silica composite particles was performed in water/ethanol solution of tetraethoxyorthosilicate with ammonia catalyst in the presence of the surface-modified magnetite nanoparticles. The magnetite/silica composite particles with a size of ca. 100 nm were successfully prepared at 0.05 M TEOS, 15 M water, and 0.8 M ammonia with injection of the magnetite nanoparticle colloid at 2 min after the initiation of hydrolysis reaction of TEOS. Magnetite concentration in the composite particles could be raised to 17.3 wt.% by adjustment of the injected amount of the magnetite colloid, which brought about the saturation magnetization of 7.5 emu/g for the magnetite/silica composite particles.  相似文献   

3.
In this paper, a facile synthesis of 100 nm commercial colloid silica coated with nano-ceria core–shell composite particles by the precipitation method using ammonium cerium nitrate and urea as a precipitator with polyvinylpyrrolidone(PVP) as an assistant was briefly introduced. The results showed that the colloid silica was surrounded by nano-ceria uniformly forming the core–shell composite particles. The synthesis process was further discussed and optimized. It was found that the type and quantity of surfactant played a key role in the process. PVP connected the surface of colloid silica and that of the ceria precursor.  相似文献   

4.
The tetramethoxysilane (TMOS)/2‐hydroxylethyl methacrylate (HEMA) hybrid gels were synthesized with acid and base catalysts, via the in situ polymerization of HEMA, with and without the cosolvent methanol. With methanol in the TMOS/HEMA sol, the enhanced esterification and depolymerization reactions of the silanols resulted in a slower growth of silica particles. The silica particles that were synthesized with an acid catalyst were less than 40 nm. The thermal resistance of the poly(2‐hydroxyethyl methacrylate) (PHEMA) chains was enhanced by the addition of colloidal silica. The Fourier transform infrared characterizations and the exothermal peaks on the differential scanning calorimetry traces of these hybrid gels indicated chemical hybridization occurring as a result of condensation of the colloid silica and PHEMA at higher temperatures. Hence, the residual weight content of the hybrid gel after its synthesis with the base catalyst was even higher than the content of TMOS in the hybrid sol. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3476–3486, 2004  相似文献   

5.
Combining metal nanoparticles and dielectrics (e.g. silica) to produce composite materials with high dielectric constant is motivated by application in energy storage. Control over dielectric properties and their uniformity throughout the composite material is best accomplished if the composite is comprised of metal core - dielectric shell structured nanoparticles with tunable dimensions. We have synthesized silver nanoparticles in the range of 40-100nm average size using low concentration of saccharide simultaneously as the reducing agent and electrostatic stabilizer. Coating these silver particles with silica from tetraalkoxysilanes has different outcomes depending on the alcoholic solvent and the silver particle concentration. A common issue in solution-based synthesis of core-shell particles is heterogeneous nucleation whereupon two populations are formed: the desired core-shell particles and undesired coreless particles of the shell material. We report the formation of Ag@SiO(2) core-shell particles without coreless silica particles as the byproduct in 2-propanol. In ethanol, it depends on the silver surface area available whether homogeneous nucleation of silica on silver is achieved. In methanol and 1-butanol, core-shell particles did not form. This demonstrates the significance of controlling the tetraalkoxysilane hydrolysis rate when growing silica shells on silver nanoparticles.  相似文献   

6.
Polymethylsiloxane (PMS) hydrogel (C(PMS)=10 wt%, soft paste-like hydrogel), diluted aqueous suspensions, and dried/wetted xerogel (powder) were studied in comparison with suspensions and dry powders of unmodified and silylated nanosilicas and silica gels using (1)H NMR, thermally stimulated depolarization current (TSDC), quasielastic light scattering (QELS), rheometry, and adsorption methods. Nanosized primary PMS particles, which are softer and less dense than silica ones because of the presence of CH(3) groups attached to each Si atom and residual silanols, form soft secondary particles (soft paste-like hydrogel) that can be completely decomposed to nanoparticles with sizes smaller than 10 nm on sonication of the aqueous suspensions. Despite the soft character of the secondary particles, the aqueous suspensions of PMS are characterized by a higher viscosity (at concentration C(PMS)=3-5 wt%) than the suspension of fumed silica at a higher concentration. Three types of structured water are observed in dry PMS xerogel (adsorbed water of 3 wt%). These structures, characterized by the chemical shift of the proton resonance at delta(H) approximately 1.7,3.7, and 5 ppm, correspond to weakly associated but strongly bound water and to strongly associated but weakly or strongly bound waters, respectively. NMR cryoporometry and QELS results suggest that PMS is a mesoporous-macroporous material with the textural porosity caused by voids between primary particles forming aggregates and agglomerates of aggregates. PMS is characterized by a much smaller adsorption capacity with respect to proteins (gelatin, ovalbumin) than unmodified fumed silica A-300.  相似文献   

7.
Well-crystallised TiO2 particles (P-25, 20-30 nm in diameter) were directly incorporated into surfactant-templated mesoporous silica particles (pore diameter: 2.7 nm), and the composite material with a high TiO2 content (60 wt%) showed molecular selective and enhanced photocatalysis for decomposition of 4-nonylphenol.  相似文献   

8.
In this work, functionalized nanometric silica particles were engaged in emulsion polymerization of ethyl acrylate. The morphological characterization of this composite material was performed by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). We were particularly interested in the state of encapsulation of the silica particles and their distribution in the latex film. Initialy, we successively studied both components of the composite: polymer beads and silica particles differ by their size and also by their contrast. In addition, it was possible to perfrom dark field TEM to study this system of two amorphous phases because their respective amorphous halos are not too close. Hence, we investigated the colloid material in aqueous media and after film formation. Although no ideal encapsulation is observed in the colloid in aqueous media, the distribution of silica in the latex film is good. SAXS results are in good agreement with TEM observations.  相似文献   

9.
A series of fumed oxides such as silica, titania, alumina, silica/alumina (SA), silica/titania (ST), and alumina/silica/titania (AST), initial and hydrothermally treated (HTT) in the steam phase at T(HTT)=150, 250, and 350 degrees C was studied by adsorption, AFM, XRD, FTIR, and theoretical methods. Diminution of the size of primary particles (corresponding to increasing S(BET)) of initial silica and mixed oxides results in enhancement of their structural changes on HTT with elevating T(HTT) and increasing density of packing of primary particles in the secondary structures. Relative changes in the texture of treated fumed silicas are smaller than those of mesoporous silica gels occurring under similar HTT conditions. On HTT, aggregates of primary particles and their agglomerates become denser but their surface layers become looser because of transfer of silica fragments from one particle to another, and the smaller the initial primary particles, the greater the relative diminution of the specific surface area S(BET) for the same type of primary particle packing in aggregates. Relative changes in the pore volume V(p) (or V(BJHd)) on HTT are more complex than that of S(BET), as for many samples the V(p) value increases especially at T(HTT)=150 degrees C. Alumina and titania partially inhibit structural changes on HTT, which decrease in the series silica > SA > AST approximately ST.  相似文献   

10.
Wet silica gels with approximately 1.4 x 10(-3) mol SiO2/cm3 and approximately 92 vol % liquid phase were obtained from sonohydrolysis of tetraethoxysilane (TEOS) with different additions of isopropyl alcohol (IPA). The IPA/TEOS molar ratio R was changed from 0 to 4. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The wet gels exhibit mass fractal structure with fractal dimension increasing from D approximately 2.10 to D approximately 2.22, characteristic length xi decreasing from approximately 9.5 to approximately 6.9 nm, as R increases from 0 to 4, and an estimated characteristic length for the primary silica particles lower than approximately 0.3 nm. The supercritical process apparently eliminates a fraction of the porosity, increasing the mass fractal dimension and shortening the fractality domain in the mesopore region. The fundamental role of isopropyl alcohol on the structure of the resulting aerogels is to decrease the porosity and the pore mean size as R changes from pure TEOS to R = 4. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure, with correlated mass fractal dimension Dm approximately 2.7 and surface fractal dimension Ds approximately 2.3, as inferred from SAXS and nitrogen adsorption data.  相似文献   

11.
Au/SiO2 and Ag/SiO2 supported metal-nanoparticles (MNPs) were implemented to fabricate SiO2-based inorganic?Cinorganic hybrid sonogel films. Prepared Au/SiO2- and Ag/SiO2-MNPs exhibited low 2D-HCP crystallinity with particle diameters below 10?nm and homogeneous size distribution. The catalyst-free (CF) sonogel route was successfully implemented to produce these optically active nanocomposite films by doping the liquid sol-phase with these MNP systems and its subsequent deposition onto glass substrates via standard spin-coating procedures. The easy MNP-loading within the mesoporous dielectric sonogel network evidenced a huge chemical affinity between the silica sonogel hosting system and the guest SiO2-supported MNPs. This fact allowed us to fabricate high quality hybrid films suitable for cubic nonlinear optical (NLO) characterizations via the Z-Scan technique. Indeed, the hosting sonogel network provided adequate thermal and mechanical stability protecting the active MNPs from environment conditions and diminished their tendency to aggregate; thus, preserving their pristine optical properties and morphology, giving rise to stable sol?Cgel hybrid films appropriate for photonic applications. Comprehensive morphological, structural, spectroscopic and nonlinear photophysical characterizations were optimally performed to the developed hybrid films. Our results have shown that the crystalline nature of the implemented MNPs, their small sizes and appropriate guest?Chost stabilizing interactions play a crucial role in the observation of improved cubic NLO-properties of these MNP structures embedded within the highly pure CF-sonogel confinement.  相似文献   

12.
To prepare silica-coated hematite particles without agglomeration, the effects of solid fraction, ion content in solution, and designed layer thickness on agglomeration and dispersion behavior after silica coating were examined. Since the ion concentration remained high in suspension after the hematite particles were prepared, these particles formed aggregates by the compression of an electric double layer on the hematite and silica layer produced a solid bridge between primary hematite particles. Silica bridge formation and agglomeration were almost completely prevented by decreasing the ion concentration and solid fraction of the hematite particles. Furthermore, the effects of the silica-layer thickness and structure on the reduction of hematite to iron under hydrogen gas flow and the iron core stability under air were discussed. When the solid fraction was low in suspension to prevent agglomeration during coating, a densely packed structure of nanoparticles formed by heterogeneous nucleation was observed on the silica-layer surface. Since this structure could not completely prevent oxide diffusion, the layer thickness was increased to 40 nm to obtain a stable iron core under air. Although a dense uniform layer was produced at a high solid fraction during coating, its thickness was reduced to 20 nm to completely reduce hematite to iron.  相似文献   

13.
The physicochemical characteristics of single and mixed zirconia and silica gels produced by the sol-gel technique at different synthesis pH and sequence of introducing the reagents in the mother liquid are presented. As a result of comparing the data obtained by different research methods, it is found that in the mixed gels, irrespective of the synthesis technique, Si-O-Zr bonds are present. The introduction of a zirconium salt in the mother liquid containing a silicate salt leads to the preferred formation of zirconia gel granules of 20–30 nm in diameter enclosed in the matrix of silica gel. The inverse sequence of introducing the gel-forming components in the reaction mixture promotes the formation of large gel aggregates containing the particles of less that 10 nm and having a high degree of polymerization. Mixed gels of zirconium oxyhydrate and silicic acid have an order higher sorptive capacity for yttrium (III) and calcium cations, as compared to single silica gels and zirconia gels.  相似文献   

14.
Liposomes prepared from a mixture of L-alpha-dipalmitoylphosphatidylcholine and the PEGilated phospholipid N-(carbonylmethoxypoly(ethylene glycol 2000))-1,2-distearoyl-sn-glycero-3-phosphoethanolamine were used as templates for the production of silica and alkylated silica approximately 100 nm capsules, "liposils", entrapping aqueous solutions of anionic dyes. Triggered release of this content was successfully affected by either low-frequency ultrasound or by microwave treatments. Cryo-TEM was used to follow the formation process of these particles, which are aggregated in a chain-like manner. A mechanism explaining this phenomenon is suggested.  相似文献   

15.
This paper describes a performance of precise control of shell thickness in silica-coating of Au nanoparticles based on a sol-gel process, and an investigation into X-ray imaging properties for the silica-coated Au (Au/SiO(2)) particles. The Au nanoparticles with a size of 16.9±1.2 nm prepared through a conventional citrate reduction method were used as core particles. The Au nanoparticles were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source, sodium hydroxide (NaOH) as a catalyst, and (3-aminopropyl) trimethoxysilane (APMS) as a silane coupling agent. An increase in TEOS concentration resulted in an increase in shell thickness. Under certain concentrations of Au, H(2)O, NaOH, and APMS, the Au/SiO(2) particles with silica shell thickness of 6.0-61.0 nm were produced with varying TEOS concentration. Absorption peak wavelength of surface plasmon resonance of the Au/SiO(2) colloid solution depended on silica shell thickness, which agreed approximately with the predictions by Mie theory. The as-prepared colloid solution could be concentrated up to an Au concentration of 0.19 M with salting-out and centrifugation. The concentrated colloid solution showed an X-ray image with high contrast, and a computed tomography value for the colloid solution with an Au concentration of 0.129 M was achieved 1329.7±52.7 HU.  相似文献   

16.
The effect of methanol cosolvent on the synthesis of polypyrrole-silica colloidal nanocomposites using ultrafine silica sols in combination with both FeCl3 and APS oxidants has been investigated. Two protocols were evaluated: the addition of methanol to an aqueous silica sol and the addition of water to a methanolic silica sol. The latter protocol proved to be more robust, since it allowed colloidally stable dispersions to be prepared at higher methanol content (up to 50 vol% using the APS oxidant). This allowed greater control over the particle size of the nanocomposite particles. In general, the spectroscopic data, the particle size range, silica contents and electrical conductivities of these nanocomposites were similar to those reported earlier for purely aqueous formulations. Polypyrrole contents ranged from 49 to 71% by mass and particle diameters varied from around 160 to 360 nm. In terms of colloid stability, the APS oxidant was preferred for nanocomposite syntheses in the presence of methanol. However, the FeCl3 oxidant generally gave higher conductivities and narrower size distributions under comparable conditions. HF etching experiments combined with transmission electron microscopy studies indicated that, to a first approximation, these nanocomposite particles had core-shell morphologies, with a hydrophobic polypyrrole core and a hydrophilic silica shell that compose approximately one monolayer of silica sol particles. Finally, aqueous electrophoresis measurements suggested that the polypyrrole-silica nanocomposites were silica-rich and that the methanolic silica sol was more hydrophobic (lower surface charge density) than the aqueous silica sol.  相似文献   

17.
The pore size distribution in silica gels can be tailored by the addition of silica soot particles during the gel formation. We introduce a numerical model in order to simulate the structure of this “composite gel”. The algorithm is based on Diffusion-Limited Cluster-Cluster Aggregation model with an initial binary distribution of monomer sizes. The textural properties of the simulated gels are calculated using a simple triangulation method. Nitrogen adsorption-desorption experiments show that with the powder addition the mean pore size is shifted towards larger pore size and the specific surface area decreases. Numerical results of the mean pore size, specific surface area, and particles are in good agreement with experimental data. Because of these textural properties this new type of gels and aerogels has larger permeability and interesting properties as host matrix. The composite gels and the numerical model could also be helpful to simulate the natural allophanic gel found in volcanic soils.  相似文献   

18.
SiO2/PVAc无机-有机复合微球的合成及其膜性能研究   总被引:1,自引:0,他引:1  
以纳米二氧化硅粒子(SiO2)为稳定剂,在少量反应型阴离子乳化剂——烯丙氧基羟丙磺酸钠(HAPS)作助稳定剂的情况下,制备了具有草莓型结构的二氧化硅/聚醋酸乙烯酯(SiO2/PVAc)无机-有机纳米复合微球.研究表明,纳米SiO2与PVAc的氢键作用是形成这种单分散草莓型SiO2/PVAc无机-有机纳米复合微球的关键.透射电镜(TEM)观察显示,纳米SiO2吸附在PVAc表面,形成草莓型结构.讨论了纳米二氧化硅溶胶的种类和用量、乳化剂种类对复合微球形态及其膜性能的影响,并讨论了复合微球的形成机理.  相似文献   

19.
The interaction of the globular protein lysozyme with silica nanoparticles of diameter 20 nm was studied in a pH range between the isoelectric points (IEPs) of silica and the protein (pH 3-11). The adsorption affinity and capacity of lysozyme on the silica particles is increasing progressively with pH, and the adsorbed protein induces bridging aggregation of the silica particles. Structural properties of the aggregates were studied as a function of pH at a fixed protein-to-silica concentration ratio which corresponds to a surface concentration of protein well below a complete monolayer in the complete-binding regime at pH > 6. Sedimentation studies indicate the presence of compact aggregates at pH 4-6 and a loose flocculated network at pH 7-9, followed by a sharp decrease of aggregate size near the IEP of lysozyme. The structure of the bridged silica aggregates was studied by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The structure factor S(q) derived from the scattering profiles displays characteristic features of particles interacting by a short-range attractive potential and can be represented by the square-well Percus-Yevick potential model, with a potential depth not exceeding 3k(B)T.  相似文献   

20.
An ever-present problem in the use of commercial membranes for treatment of drinking water is fouling of the membranes by natural organic matter (NOM). This work describes a new approach to elimination or minimization of membrane fouling by NOM. When a 2% solution of polysulfone in NMP and propionic acid is slowly injected into water, approximately 50 nm polysulfone particles are spontaneously formed, and these hydrophobic particles quickly coagulate into approximately 12-microm diameter aggregates; the formed material has a surface area of approximately 100 m(2)/g and an equivalent "pore" size of 25 nm. When 50 mg/L of the new material is equilibrated with a local drinking water supply, virtually all adsorptive fouling of a 20-kDa molecular weight cutoff ultrafiltration membrane is eliminated. Interestingly, although only a very small percentage of the NOM is removed by adsorption on the polysulfone aggregates, it appears that exactly this small NOM component is responsible for nearly all of the membrane fouling. This paper describes the fabrication and characterization of the new polysulfone adsorbent and offers an hypothesis for the formation of the product via spontaneous emulsification and spinodal decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号