首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition behaviours of oxovanadium(IV)hydroxamate complexes of composition [VO(Q)2?n(HL1,2)n]: [VO(C9H6ON)(C6H4(OH)(CO)NHO)] (I), [VO(C6H4(OH)(CO)NHO)2] (II), [VO(C9H6ON)(C6H4(OH)(5-Cl)(CO)NHO)] (III), and [VO(C6H4(OH)(5-Cl)(CO)NHO)2] (IV) (where Q?=?C9H6NO? 8-hydroxyquinolinate ion; HL1?=?[C6H4(OH)CONHO]? salicylhydroxamate ion; HL2?=?[C6H3(OH)(5-Cl)CONHO]? 5-chlorosalicylhydroxamate ion; n?=?1 and 2), which are synthesised by the reactions of [VO(Q)2] with predetermined molar ratios of potassium salicylhydroxamate and potassium 5-chlorosalicylhydroxamate in THF?+?MeOH solvent medium, have been studied by TG and DTA techniques. Thermograms indicate that complexes (I) and (III) undergo single-step decomposition, while complexes (II) and (IV) decompose in two steps to yield VO(HL1,2) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stabilities for the complexes has been inferred as III?>?I > II?>?IV.  相似文献   

2.
In the structure of the title compound, [VO(C2O4)(H2O)3]·2H2O, the V atom of the oxovanadium(IV) cation is coordinated to one bidentate oxalate anion and three water mol­ecules, resulting in a neutral complex. Two more water mol­ecules are not coordinated to the V atoms but are involved in the hydrogen‐bonding network, which consists of ten different hydrogen bonds.  相似文献   

3.
We have synthesized furan-based vanadium complexes, bis(5-nitrofuran-2-carboxylato)oxovanadium(IV) – [VO(5NF)2], bis(1-furan-2-yl-ethanonato)oxovanadium(IV) sulfate – [VO(2AF)2]SO4, and bis(5-methyl-2-furalato)oxovanadium(IV) sulfate – [VO(MFFA)2]SO4 possessing [VO(O4)] coordination mode. These complexes are characterized by physico-chemical and spectroscopic methods. Based on electron paramagnetic resonance parameters, the proposed geometry is close to a distorted square pyramid. Animal study was carried out using standard protocol and the complete profile of glucose, protein, and total cholesterol levels were analyzed followed by an oral glucose tolerance test.  相似文献   

4.
Barium Stannate Powders from Hydrothermal Synthesis and by Thermolysis of Barium‐Tin(IV)‐Glycolates. Synthesis and Structure of [Ba(C2H6O2)4][Sn(C2H4O2)3] and [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH The hydrothermal reaction as well as the microwave assisted hydrothermal reaction of SnO2·aq with barium hydroxide gives Ba[Sn(OH)6] ( 1 ) as powder with bar like particles. Compound 1 of the same morphology can also be isolated from a hydrothermal reaction of [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ). The reaction of SnO2·aq with Ba(OH)2·8H2O in ethylene glycol yields the glycolate [Ba(C2H6O2)4][Sn(C2H4O2)3] ( 3 ), which forms in methanol the solvate [Ba(C2H6O2)2][Sn(C2H4O2)3]·CH3OH ( 4 ). Compounds 1 , 3 and 4 react at different temperatures to BaSnO3 ( 2 ) consisting of powders with different morphologies; because of the grain size of the resulting powders compounds 3 and 4 are suitable as precursor for the fabrication of corresponding ceramics.  相似文献   

5.
In the crystals of the five title compounds, tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(ethanol‐O)dicopper(II)–ethanol (1/2), [Cu2(C6H11O2)4(C2H6O)2]·2C2H6O, (I), tetrakis(μ‐3,3‐dimethylbutyrato‐O:O′)bis(2‐methylpyridine‐N)di­copper(II), [Cu2(C6H11O2)4(C6H7N)2], (II), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (III), tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(4‐methylpyridine‐N)di‐copper(II), [Cu2(C6H11O2)4(C6H7N)2], (IV), and tetrakis‐(μ‐3,3‐dimethylbutyrato‐O:O′)bis(3,3‐dimethylbutyric acid‐O)dicopper(II), [Cu2(C6H11O2)4(C6H12O2)2], (V), the di­nuclear CuII complexes all have centrosymmetric cage structures and (IV) has two independent molecules. The Cu?Cu separations are: (I) 2.602 (3) Å, (II) 2.666 (3) Å, (III) 2.640 (2) Å, (IV) 2.638 (4) Å and (V) 2.599 (1) Å.  相似文献   

6.
In this paper, self-assembly reactions of copper(II) ions, methoxybenzoate isomers and 2,2′-bipyridine yield two copper-oxygen polynuclear complexes: [Cu2(bpy)2(2-C8H7O3)3]·(2-C8H7O3)·14H2O 1, [Cu4(bpy)4(H2O)(OH)4]·4(3-C8H7O3)·17H2O 2, and a simple mononuclear complex [Cu(bpy)(H2O)(4-C8H7O3)2] 3. (bpy = 2,2′-bipyridine, C8H7O3 = methoxybenzoate ion). Single crystal X-ray diffraction analyses reval that compound 1 is a dinuclear copper(II) complex which bridged by three carboxylate groups, and 2 presents a discrete step-like tetra-nuclear copper Cu4O4 core. Compound 3 shows a square pyramidal mononuclear geometry. The magnetic susceptibility of complex 1 measured from 2 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions. Furthermore, the results about IR spectra and thermal analyses were discussed.  相似文献   

7.
The results on the synthesis and study of the crystal structures of compounds based on anionic fragments {VO(Cbdc)2}2– formed by oxovanadium(IV) (vanadyl, VO2+) and two chelate-bound anions of cyclobutane-1,1-dicarboxylic acid (H2Cbdc = C4H6(COOH)2) are presented. The use of ammonium cation NH4+ as a counterion in the synthesis leads to the formation of the mononuclear complex (NH4)2[VO(Сbdc)2(H2O)] · 2H2O (I). In the case of K+ cation, compound [K4(VO)2(Сbdc)4(H2O)4] n (II) with the 3D polymeric crystal structure is formed. The reaction of compound II with Mg(NO3)2 · 6H2O in an aqueous solution involves the partial substitution of K+ by Mg2+ cations to form 1D polymeric compound {[KMg0.5(VO)(Сbdc)2(H2O)6.5] · 3H2O} n (III), while a similar reaction of compound I does not afford the product of substitution of NH4+ by Mg2+ cations (CIF files CCDC 1551021–1551023 for compounds IIII, respectively).  相似文献   

8.
Two three-dimensional supramolecular water architectures, [Zn(phen)3]2·[Zn(C10H16O4)·(H2O)3]·(C10H16O4)2·20H2O (1) and [Co(phen)3]2·[Co(H2O)6]·(C10H16O4)3·30H2O (2) [phen = 1,10-Phenanthroline, C10H16O4 = sebacic dianion], have been synthesized and characterized by IR, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffractions. The two structures both contain extensive hydrogen bonding between water molecules as well as between water molecules and sebacic anions. The water molecules and sebacic acid O atoms assembled 2D supramolecular corrugated sheets with different morphology in the two complexes.  相似文献   

9.
V(NCS)3 or V(NCS)3(THF)3 reacts under various conditions with pyridine-N-oxide to oxovanadium(IV)-complexes of the type VO(NCS)2 · 4C5H5NO and VO(NCS)2 · 5C5H5NO. Reactions with 4-picoline-N-oxide lead to VO(NCS)2(4-CH3C5H4NO2)2. The prepared compounds are characterised by analytical data, their spectral and magnetic properties, and IR absorption spectra. The mechanism of the reaction is discussed.  相似文献   

10.
The heterometallic complex [Cu(VO)2(C10H8N2)2(C2O4)3·2H2O] has been prepared and characterised by electronic and IR spectra, molecular electrical conductivity and thermal behaviour. A polymeric structure is proposed with oxalate and 4,4′-dipyridine acting as bridging ligands and VO(IV) of C4v symmetry and Cu(II) in octahedral surrounding the oxalate anion V4h.  相似文献   

11.
In the crystals of bis(pyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C5H5N)2], (I), the dinuclear CuII complexes have cage structures with Cu?Cu distances of 2.632 (1) and 2.635 (1) Å. In the crystals of bis(2‐­methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (II), bis­(3‐methylpyridine‐N)tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C6H7N)2], (III), and bis(quinoline‐N)­tetrakis(μ‐­trimethylsilylacetato‐O:O′)dicopper(II), [Cu2(C5H11O2Si)4(C9H7N)2], (IV), the centrosymmetric dinuclear CuII complexes have a cage structure with Cu?Cu distances of 2.664 (1), 2.638 (3) and 2.665 (1) Å, respectively. In the crystals of catena‐poly­[tetrakis(μ‐trimethylsilylacetato‐O:O′)dicopper(II)], [Cu2(C5H11O2Si)4]n, (V), the dinuclear CuII units of a cage structure are linked by the cyclic Cu—O bonds at the apical positions to form a linear chain by use of a glide translation.  相似文献   

12.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

13.
Two new isopolymolybdate-based metal–organic complexes, [Cu2(2-ptz)2(Mo4O14)0.5] (1) and [Cu3(OH)2(3-ptz)4(γ-H4Mo8O26)(H2O)4]·10H2O (2) (2-ptzH = 5-(2-pyridyl)-1H-tetrazole, 3-ptzH = 5-(3-pyridyl)-1H-tetrazole), constructed from isomeric ligands with different N-donor sites were synthesized under hydrothermal conditions. In 1, each [Mo4O14]4? cluster connected with six neighboring [Mo4O14]4? clusters through six binuclear [Cu2(2-ptz)2]2+ subunits to yield a 2-D layer. In 2, bidentate inorganic [Mo8O26]4? anions link the trinuclear [Cu3(OH)2(3-ptz)4] clusters to construct a 1-D chain. Adjacent chains connect through Mo–N bonds between the [Mo8O26]4? anions and pyridyl groups from the trinuclear clusters to form a 2-D layer. The effect of the N-donor sites of the rigid isomeric ligands on the structures of 1 and 2 was discussed. The electrochemical properties and photocatalytic activities of 1 and 2 have also been studied.  相似文献   

14.
Copper(II) oxalate coordination polymer [{Cu4(C2O4)4(L)4}3 · {Cu3(C2O4)3(L)6}2 · 3L · 25H2O]n (L = 3,3′,5,5′‐tetramethyl‐4,4′‐bipyrazole) reveals a structure that is related to the Pt3O4 net topology. The 3D linkage is sustained with copper‐oxalate squares and copper‐bipyrazole triangles sharing vertices. The framework supports giant icosahedral cages and entraps discrete molecular octahedra formed by two molecular complexes Cu3(C2O4)3(L)6 associated by means of NH‐‐‐N hydrogen bonding. The coexistence of the discrete and 3D portions formed by the same components suggests self‐templation as a key feature of the system. Simpler copper oxalate compounds [Cu(C2O4)(L)2(H2O)] · CH3OH · 3.75H2O and [Cu2(C2O4)2(L)5] · L · 11H2O are concomitant products of the reaction mixture and they exist in the form of molecular mono‐ and binuclear complexes.  相似文献   

15.
The thermal decomposition behavior of oxovanadium(IV)hydroxamate complexes of composition [VO(acac)(C6H5C(O)NHO)] (I), [VO(C6H5C(O)NHO)2] (II), [VO(acac)(4-ClC6H4C(O)NHO)] (III), [VO(4-ClC6H4C(O)NHO)2] (IV) (where acac = (CH3COCHCOCH3 ) synthesized from the reactions of VO(acac)2 with equi- and bimolar amounts of potassium benzohydroxamate and potassium 4-chlorobenzohydroxamate in THF + MeOH solvent medium has been studied by TG and DTA techniques. TG curves indicated that complexes I, II, and IV undergo decomposition in single step to yield VO2 as the final residue, while complex III decomposes in two steps to yield VO(acac) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stability for the complexes has been inferred as IV > I > III > II.  相似文献   

16.
In poly[[diaquaoxido[μ3‐trioxidoselenato(2−)]vanadium(IV)] hemihydrate], {[VO(SeO3)(H2O)2]·0.5H2O}n, the octahedral V(H2O)2O4 and pyramidal SeO3 building units are linked by V—O—Se bonds to generate ladder‐like chains propagating along the [010] direction. A network of O—H...O hydrogen bonds helps to consolidate the structure. The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The title compound has a similar structure to those of the reported phases [VO(OH)(H2O)(SeO3)]4·2H2O and VO(H2O)2(HPO4)·2H2O.  相似文献   

17.
Coordination Polymeric 1, 2‐Dithiooxalato and 1, 2‐Dithiosquarato Complexes. Syntheses and Structures of [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2], [Ni(cyclam)(1, 2‐dtsq)]·2DMF, [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H22, and [H3O][H5O2][Cu(cyclam)]3[Cu2(1, 2‐dtsq)3]2 1, 2‐Dithioxalate and 1, 2‐dithiosquarate ions have a pair of soft and hard donor centers and thus are suited for the formation of coordination polymeric complexes containing soft and hard metal ions. The structures of four compounds with building blocks containing these ligands are reported: In [BaCr2(bipy)2(1, 2‐dtox)4(H2O)2] Barium ions and pairs of Cr(bipy)(1, 2‐dtox)2 complexes form linear chains by the bisbidentate coordination of the dithiooxalate ligands towards Ba2+ and Cr3+. In [Ni(cyclam)(1, 2‐dtsq)]·2DMF short NÖH···O hydrogen bonds link the NiS2N4‐octahedra with C2v‐symmetry to an infinite chain. In [Ni(cyclam)Mn(1, 2‐dtsq)2(H2O)2]·2H2O the 1, 2‐dithiosquarato ligand shows a rare example of S‐coordination towards manganese(II). The sulfur atoms of cis‐MnO2S4‐polyedra are weakly coordinated towards the axial sites of square‐planar NiN4‐centers, thus forming a zig‐zag‐chain of Mn···Ni···Mn···Ni polyhedra. [H3O][H5O2][Cu (cyclam)]3[Cu2(1, 2‐dtsq)3]2 contains square planar [CuII(cyclam)]2+ ions and dinuclear [CuI2(1, 2‐dtsq)3]4— ions. Here each copper atom is trigonally planar coordinated by S‐donor atoms of the ligands. The Cu…Cu distance is 2.861(4)Å.  相似文献   

18.
Solid complex compounds of Fe(II) and Fe(III) ions with rutin were obtained. On the basis of the elementary analysis and thermogravimetric investigation, the following composition of the compounds was determined: (1) FeOH(C27H29O16)·5H2O, (2) Fe2OH(C27H27O16)·9H2O, (3) Fe(OH)2(C27H29O16)·8H2O, (4) [Fe6(OH)2(4H2O)(C15H7O12)SO4]·10H2O. The coordination site in a rutin molecule was established on the basis of spectroscopic data (UV–Vis and IR). It was supposed that rutin was bound to the iron ions via 4C=O and 5C—oxygen in the case of (1) and (3). Groups 5C–OH and 4C=O as well as 3′C–OH and 4′C–OH of the ligand participate in binding metals ions in the case of (2). At an excess of iron(III) ions with regard to rutin under the synthesis conditions of (4), a side reaction of ligand oxidation occurs. In this compound, the ligands’ role plays a quinone which arose after rutin oxidation and the substitution of Fe(II) and Fe(III) ions takes place in 4C=O, 5C–OH as well as 4′C–OH, 3′C–OH ligands groups. The magnetic measurements indicated that (1) and (3) are high-spin complexes.  相似文献   

19.
The reactions of cyclohexenephosphonic acid (C6H9PO3H2) and 3-(2-pyridyl)pyrazole (2-pyPzH) with copper(II) chloride and copper(II) bromide affords a 1-D compound [Cu(2-pyPz)Cl] (1) and a decanuclear [Cu10(OH)4(C6H9PO3)6(2-pyPz)4] (2) cage complex. In 1, adjacent copper ions are bridged by two 2-pyPz ligands into dimers, which are further linked by Cl? into a ladder-like chain. Compound 2 has a decanuclear cage structure, the overall cage can be viewed as composed of two Cu4(OH)2(2-pyPz)2 wings that are bridged by a central Cu2P2O6 rim. Variable-temperature magnetic susceptibility studies indicate that both compounds show antiferromagnetic interactions between copper centers.  相似文献   

20.
Three new copper(II) complex compounds with chlorhexidine diacetate as a ligand have been prepared and characterized by elemental and thermogravimetrical analyses, molar conductances, magnetic susceptibility measurements, infrared, electronic and EPR spectra. The complexes correspond to the formulas: [Cu2(CHX)Cl4]·2C2H5OH, [Cu2(CHX)Br4]·2C2H5OH and [Cu2(CHX)(CH3COO)2] (CH3COO)2·2C2H5OH, where CHX = chlorhexidine, their composition and stereochemistry depending on the reaction conditions and the metal salt used. Chlorhexidine acts as neutral tetradentate NNNN donor, coordinating through the four imine nitrogen atoms. Investigations on antimicrobial activity in vitro show that all the complexes are active against the tested microorganisms, the complex with chloride being more active against Gram negative bacteria than chlorhexidine diacetate..   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号