首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
付东 《中国化学》2006,24(10):1315-1320
An equation of state(EOS)applicable for both the uniform and non-uniform fluids was established by using thedensity-gradient expansion,in which the influence parameter к[p(r),T] was obtained by the use of direct correlationfunction.The density functional theory(DFT)provides a framework under which both the phase equilibria and in-terfacial properties can be investigated within a single set of molecular parameters.The phase equilibria inside thecritical region can be improved by the renormalization group theory(RGT).However,the correction of interracialproperties by DFT and RGT is computationally difficult.In the present work,the density gradient theory(DGT)inwhich к[p(r),T] is treated as a constant is used to combine with the RGT for interfacial properties inside the criticalregion.  相似文献   

2.
An accurate prediction of phase behavior at conditions far and close to criticality cannot be accomplished by mean-field based theories that do not incorporate long-range density fluctuations. A treatment based on renormalization-group (RG) theory as developed by White and co-workers has proven to be very successful in improving the predictions of the critical region with different equations of state. The basis of the method is an iterative procedure to account for contributions to the free energy of density fluctuations of increasing wavelengths. The RG method has been combined with a number of versions of the statistical associating fluid theory (SAFT), by implementing White's earliest ideas with the improvements of Prausnitz and co-workers. Typically, this treatment involves two adjustable parameters: a cutoff wavelength L for density fluctuations and an average gradient of the wavelet function Φ. In this work, the SAFT-VR (variable range) equation of state is extended with a similar crossover treatment which, however, follows closely the most recent improvements introduced by White. The interpretation of White's latter developments allows us to establish a straightforward method which enables Φ to be evaluated; only the cutoff wavelength L then needs to be adjusted. The approach used here begins with an initial free energy incorporating only contributions from short-wavelength fluctuations, which are treated locally. The contribution from long-wavelength fluctuations is incorporated through an iterative procedure based on attractive interactions which incorporate the structure of the fluid following the ideas of perturbation theories and using a mapping that allows integration of the radial distribution function. Good agreement close and far from the critical region is obtained using a unique fitted parameter L that can be easily related to the range of the potential. In this way the thermodynamic properties of a square-well (SW) fluid are given by the same number of independent intermolecular model parameters as in the classical equation. Far from the critical region the approach provides the correct limiting behavior reducing to the classical equation (SAFT-VR). In the critical region the β critical exponent is calculated and is found to take values close to the universal value. In SAFT-VR the free energy of an associating chain fluid is obtained following the thermodynamic perturbation theory of Wertheim from the knowledge of the free energy and radial distribution function of a reference monomer fluid. By determining L for SW fluids of varying well width a unique equation of state is obtained for chain and associating systems without further adjustment of critical parameters. We use computer simulation data of the phase behavior of chain and associating SW fluids to test the accuracy of the new equation.  相似文献   

3.
A modified version of the statistical associating fluid theory (SAFT), the so-called soft-SAFT equation of state (EOS), has been extended by a crossover treatment to take into account the long density fluctuations encountered when the critical region is approached. The procedure, based on White's work from the renormalization group theory [Fluid Phase Equilibria 75, 53 (1992); L. W. Salvino and J. A. White, J. Chem. Phys. 96, 4559 (1992)], is implemented in terms of recursion relations where the density fluctuations are successively incorporated. The crossover soft-SAFT equation provides the correct nonclassical critical exponents when approaching the critical point, and reduces to the original soft-SAFT equation far from the critical region. The accuracy of the global equation is tested by direct comparison with molecular simulation results of Lennard-Jones chains, obtaining very good agreement and clear improvements compared to the original soft-SAFT EOS. Excellent agreement with vapor-liquid equilibrium experimental data inside and outside the critical region for the n-alkane series is also obtained. We provide a set of transferable molecular parameters for this family, unique for the whole range of thermodynamic properties.  相似文献   

4.
An equation of state (EOS) applicable for the interfacial properties of CO2-methanol and CO2-ethanol mixtures was established by combining the cross-association EOS and the density gradient theory (DGT). The correlated surface tensions of CO2-ethanol mixtures agreed well with the experimental data. The results illustrated the temperature and pressure dependence of the cross-association between CO2 and alcohol hydroxyls in the whole vapor-liquid surface,and the influence of the cross-association on the calcu...  相似文献   

5.
在交叉缔合的均相状态方程的基础上,结合密度梯度理论(density gradient theory,DGT),建立了适用于CO2-甲醇和CO2-乙醇二元体系界面性质研究的状态方程,对CO2-乙醇体系表面张力的关联结果与实验值吻合良好.阐明了CO2分子与甲醇分子和乙醇分子之间的交叉缔合作用对二元体系表面张力计算结果的影响,以及界面相中CO2与醇羟基之间的交叉缔合与温度和压力之间的关系.  相似文献   

6.
A microscopic theory is developed to study the liquid-vapor interfacial properties of simple fluids with ab initio treatment of the inhomogeneous two-body correlation functions, without any interpolation. It consists of the inhomogeneous Ornstein-Zernike equation coupled with the Duh-Henderson-Verlet closure and the Lovett-Mou-Buff-Wertheim equation. For the liquid-vapor interface of the Lennard-Jones fluid, we obtained the density profile and the surface tension, as well as their critical behaviour. In particular, we identified non-classical critical exponents. The theory accurately predicts the phase diagram and the interfacial properties in a very good agreement with simulations. We also showed that the method leads to true capillary-wave asymptotics in the macroscopic limit.  相似文献   

7.
A new method is proposed for predicting the surface tension, density profile, and thickness of the surface layer of a liquid near an interface using gradient theory. The objects of study are halogenated hydrocarbons. The algorithm for calculating surface properties includes a new modification of the Peng-Robinson cubic equation of state (EoS) that does not require information on the critical parameters, and a new procedure for calculating the influence parameter. Validation of the procedure for predicting the surface properties of liquids shows that the agreement between the calculated surface tension of halogenated hydrocarbons and the existing literature data is sufficient for practical use.  相似文献   

8.
In this Perspective, we discuss the role of voids in transport processes in liquids and the manner in which the concept of voids enters the generic van der Waals equation of state and the modified free volume theory. The density fluctuation theory is then discussed and we show how the density fluctuation theory can be made a molecular theory with the help of the modified free volume theory and the generic van der Waals equation of state. The confluence of the aforementioned three theories makes it possible to calculate the transport coefficients of liquids by using the information on the equilibrium pair correlation function, which can be calculated either by an integral equation theory or Monte Carlo simulations. A number of relations between transport coefficients are also presented, which are derived on the basis of the density fluctuation theory. Since they can be used to obtain one transport coefficient from another they can be very useful in handling experimental and theoretical data. An application of the modified free volume theory to polymer melts is discussed as an example for a theory of transport properties of complex liquids.  相似文献   

9.
Dong Fu  Jiazi Feng  Jianyi Lu 《中国化学》2010,28(10):1885-1889
The perturbed‐chain statistical associating fluid theory (PC‐SAFT) and density‐gradient theory (DGT) were used to construct an equation of state (EOS) for the phase behaviors of carbon dioxide (CO2)‐sulfur dioxide (SO2) binary mixtures. The p‐x diagrams at 263 and 333 K, and the p‐T diagrams corresponding to x=0.8871 and 0.6213 were satisfactorily calculated as compared to the experimental data. With the influence parameters of pure components and the equilibrium bulk properties of mixtures as input, the interfacial properties of CO2‐SO2 binary mixtures in a wide temperature range were predicted, and the influences of temperature, pressure and bulk properties on the surface tension were discussed.  相似文献   

10.
The equilibrium conditions are analyzed for a spatially inhomogeneous ionic liquid using the density functional theory with allowance made for the second order gradient corrections. Solutions for the distribution of potential and charge density in the electric double layer at the ionic liquid/vapor interface are obtained using a parameterized total density profile normal to the surface. It is shown that taking into account the effects of the charge density gradient in the theory results in the appearance of damped oscillations of the charge density near the surface, while the double layer localized on the surface is reduced.  相似文献   

11.
We perform a series of molecular dynamics simulations of Lennard-Jones chains systems, up to tetramers, in order to investigate the influence of temperature and chain length on their phase separation and interfacial properties. Simulation results serve as a test to check the accuracy of a statistical associated fluid theory (soft-SAFT) coupled with the density gradient theory. We focus on surface tension and density profiles. The simulations allow us to discuss the success and limitations of the theory and how to estimate the only adjustable parameter, the influence parameter. This parameter is obtained by fitting the surface tension, and then used to obtain the density profiles in a predictive manner. A good agreement is found if the temperature dependence of this parameter is neglected.(c) 2004 American Institute of Physics.  相似文献   

12.
The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.  相似文献   

13.
We present in this work the application of the soft-SAFT equation of state (EoS) to the calculation of some main derivative properties, including heat capacities, reduced bulk modulus, Joule-Thomson coefficient, and speed of sound. Calculations have been performed analytically through the derivation of a primary thermodynamic potential function. The application to the n-alkanes, n-alkenes, and 1-alkanols families has been done in a semipredictive manner, with the molecular parameters of the equation obtained from previous fitting to vapor-liquid equilibrium data of the same compounds. The equation is able to capture the typical extrema isothermal derivative properties exhibit with respect to density, providing quantitative agreement with experimental (or correlation) data in some cases. Results in the vicinity of the critical point are improved by adding a crossover treatment to take into account the long-range fluctuations present in this region. By taking advantage of the molecular nature of the equation, we have been able to separate and quantify the different contributions (reference fluid, chain, and association) to the total derivative properties. The association plays a predominant role in energetic properties, such as the heat capacities, while there is a competition between association and chain length as the chain length of the compound increases for volumetric properties, such as the isothermal compressibility. These results act in favor of the molecular-based equations, like soft-SAFT, as predictive tools for several applications.  相似文献   

14.
A completely analytical equation of state for pure hard chain fluids, derived on the basis of perturbation theory and reported in our previous work, is applied for the calculation of pVT properties and the prediction of vapour–liquid equilibria of n-alkanes and n-perfluoroalkanes. The molecules are treated as a chain formed from freely joined spheres which interact via an extended site-site square-well potential. The molecular parameters of compounds are obtained from the experimental compressibility factor data above the critical temperature. These parameters are capable of relatively satisfactory prediction of the vapour–liquid equilibrium coexistence curves of compounds. Linear relationships have been found between the potential parameters of fluids and their molecular weight, which make it possible to predict the pVT data and vapour–liquid phase equilibria of heavier compounds.  相似文献   

15.
A theoretical form of the Martin-Hou equation of state   总被引:1,自引:0,他引:1  
A new equation of state is derived from the Barker-Henderson hard-sphere perturbation theory. It has the form similar to the Martin-Hou equation of state. The numerical values of the characteristic constants in the equation can be calculated by the method of Martin and Hou. The equation can be used to predict P-V-T properties accurately for fluids when the critical parameters (T_c, P_c and V_c) and one point on the vapor pressure cure are given. By using the functional relationships between the characteristic constants and the microscopic parameters, the molecular microscopic parameters of the substance can be obtained.  相似文献   

16.
We report the results of a theoretical study on the behavior of the structural parameters, electronic band structure, vibrational and thermodynamical properties of transition metal nitride, CdN in the rocksalt (RS), NiAs (P63/mmc) and CuS (B18) phases at ambient pressure. The calculations are based on the ab-initio plane-wave pseudopotential density functional theory (DFT), within the generalized gradient approximations (GGA) for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies, phonon densities of states and thermodynamical properties. We discuss the contribution of the phonons in the dynamical stability of CdN and detailed analysis of thermodynamical properties of specific heat and Debye temperature for CdN in all considered structures.  相似文献   

17.
The present work undertakes the structural and electronic properties of 3-thiophene acetic acid (abbreviated as 3-TAA) monomer and dimer. DFT calculations were performed using B3LYP functional in combination with the aug-cc-pVTZ basis set. The optimized structural parameters were found to be in a good agreement with experimental molecular geometry. The stability of the crystal packing was ensured by OH⋯O, C-H⋯O and CH⋯S intermolecular interactions. All the Non covalent interactions were deeply studied in terms of their topological parameters, Hirshfeld surface (HS) analysis and reduced density gradient (RDG) analysis. The electronic properties of the investigated compound have been performed using time dependent density functional theory (TD-DFT) and discussed through its correspondant HOMO, LUMO and excitation energy values. Likewise, the reactivity of 3-TAA was discussed in terms of several thermodynamic parameters. In addition, the molecular electrostatic potential (MEP) surface has been performed and discussed in terms of color distribution. In addition, the natural bond orbital (NBO) analysis was used to investigate the electronic charge transfer into the molecule. Harmine, Clorgyline, Isatin, zonisamide and our title compound including are known with their competitive inhibitory activity on Human monoamine oxidase, commonly named MAO A and B. This enzyme is a critical enzyme in the degradative deamination of biogenic amines throughout the body. Thus, molecular docking behaviors of 3-TAA are computed and compared to the results found for Harmine, Clorgyline, Isatin, zonisamide ligands.  相似文献   

18.
The perturbed-chain statistical associating fluid theory (PC-SAFT) and density-gradient theory are used to construct an equation of state to describe the phase behavior of binary methane–n-alkane mixtures. With the molecular parameters and influence parameters regressed from bulk properties and surface tensions of pure fluids, respectively as input, both the bulk and interfacial properties are investigated. The surface tension of the binary systems methane–propane, methane–pentane, methane–heptane and methane–decane are predicted, and the results are satisfactory compared with the experimental data. Our results show that PC-SAFT combined with density-gradient theory is able to describe the interfacial properties of binary methane–n-alkane mixtures in wide temperature and pressure ranges, and illustrate the influence of the equilibrium bulk properties and chain length of n-alkane molecule on the interfacial properties.  相似文献   

19.
Mixtures of water with alcohol are important in numerous engineering applications. Caused by the polarity of water and alcohol self-association of water and alcohol as well cross-association between water and alcohol appear in such complex mixtures. These features show significant impact on physical and chemical properties, especially phase equilibrium behaviour and hence interfacial properties. The Cahn–Hilliard theory was combined with original statistical associated fluid theory equation of states (SAFT EOS) in order to describe both the phase behaviour and interfacial properties with respect of association. The paper focuses on theoretical investigations of surface tension, density profiles, surface thickness in vapour–liquid or vapour–liquid–liquid equilibrium of mixtures of water with ethanol or 1-butanol. Results of vapour–liquid equilibrium surface tension calculations were compared with experimental data taken from the literature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号