首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Off-line two-dimensional liquid chromatography with tandem mass spectrometry detection (2D-LC/MS-MS) was used to separate a set of metabolomic species. Water-soluble metabolites were extracted from Escherichia coli and Saccharomyces cerevisae cultures and were immediately analyzed using strong cation exchange (SCX)-hydrophilic interaction chromatography (HILIC). Metabolite mixtures are well-suited for multidimensional chromatography as the range of components varies widely with respect to polarity and chemical makeup. Some currently used methods employ two different separations for the detection of positively and negatively ionized metabolites by mass spectrometry. Here we developed a single set of chromatographic conditions for both ionization modes and were able to detect a total of 141 extracted metabolite species, with an overall peak capacity of ca. 2500. We show that a single two-dimensional separation method is sufficient and practical when a pair or more of unidimensional separations are used in metabolomics.  相似文献   

2.
Palmatine is an isoquinoline alkaloid that has been widely used in China for the treatment of various inflammatory diseases such as gynecological inflammation, bacillary dysentery, enteritis, respiratory tract infection, urinary infection, etc. In the study reported in this paper, a simple and rapid high-performance liquid chromatography/electrospray ionization (ESI) tandem mass spectrometric method (MS/MS) was developed for elucidation of the structures of metabolites of palmatine in rat urine after administration of a single dose (20 mg/kg). The rat urine samples were collected and purified through C18 solid-phase extraction cartridges, and then injected onto a reversed-phase C18 column with 60:40 (v/v) methanol/0.01% triethylamine solution (2 mM, adjusted to pH 3.5 with formic acid) as mobile phase and detected by on-line MS/MS. Identification of the metabolites and elucidation of their structures were performed by comparing changes in molecular masses (DeltaM), retention times and spectral patterns of product ions with those of the parent drug. As a result, six phase I metabolites, the parent drug palmatine and two phase II metabolites were identified in rat urine for the first time.  相似文献   

3.
Pterostilbene, the dimethoxy derivative of resveratrol, has drawn much attention recently due to its potential beneficial health effects. The metabolic fate of pterostilbene, however, is not well understood. In the present study, we identified nine novel mouse urinary pterostilbene metabolites, pterostilbene glucuronide, pterostilbene sulfate, mono‐demethylated pterostilbene glucuronide, mono‐demethylated pterostilbene sulfate, mono‐hydroxylated pterostilbene, mono‐hydroxylated pterostilbene glucuronide, mono‐hydroxylated pterostilbene sulfate, and mono‐hydroxylated pterostilbene glucuronide sulfate, using liquid chromatography/atmospheric pressure chemical ionization and electrospray ionization tandem mass spectrometry. The structures of these metabolites were confirmed by analyzing the MSn (n = 1–3) spectra. To our knowledge, this is the first report of the identification of urinary metabolites of pterostilbene in mice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
5.
6.
Modified urinary nucleosides are potentially invaluable in cancer diagnosis. High-performance liquid chromatography (HPLC) was combined with full scan mass spectrometry (MS), tandem mass spectrometry and MSn analysis in order to identify purine nucleosides purified from urine. UV peaks evident in the chromatogram were examined by the various mass spectrometric techniques and adenosine, 1-methyladenosine, xanthosine, N1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, N2,N2,N7-trimethylguanosine, inosine, and 1-methylinosine were each identified in the urine samples from cancer patients. The benefits of the use of LC/MS compared with HPLC alone are discussed.  相似文献   

7.
Modified urinary nucleosides are potentially invaluable in cancer diagnosis, as they reflect altered RNA turnovers. High-performance liquid chromatography (HPLC) was combined with full-scan mass spectrometry, tandem mass spectrometry, MS(n) analysis and accurate mass measurements in order to identify pyrimidine nucleosides purified from urine. Potential nucleosides were assessed by their evident UV absorbance in the HPLC chromatogram and then further examined by the various mass spectrometric techniques. In this manner numerous pyrimidine nucleosides were identified in the urine samples from cancer patients including pseudouridine, cytidine, two methylcytidines and an acetylcytidine. Furthermore, a number of novel modified pyrimidine nucleosides were tentatively identified via critical interpretation of the combined mass spectrometric data.  相似文献   

8.
Gestrinone was studied by high performance liquid chromatography (HPLC) for screening and by gas chromatography/mass spectrometry (GC/MS) for confirmation. When the chromatograms of blank, spiked urine and dosed urine were compared by HPLC, two unknown metabolites were found and these were excreted as the conjugated forms. Metabolites 1 and 2 were tested by LC/MS and LC/MS/MS and both had parent ions at m/z 325. The fragment ion of metabolite 1 was at m/z 263 and ions for metabolite 2 were m/z 307 [MH - H(2)O](+), 289, 279 and 241. LC/MS/MS of m/z 263 as the parent ion of metabolite 1 gave fragment ions at m/z 245 and 217, which were assumed to be [263 - H(2)O](+) and [235 - H(2)O](+), respectively. The trimethylsilyl (TMS)-enol-TMS ether derivative of gestrinone displayed three peaks in its GC/MS chromatogram, formed by tautomerism.  相似文献   

9.
The metabolism of the anti-inflammatory drug Celecoxib in rabbits was characterized using liquid chromatography (LC)/tandem mass spectrometry (MS/MS) with precursor ion and constant neutral loss scans followed by product ion scans. After separation by on-line liquid chromatography, the crude urine samples and plasma and fecal extracts were analyzed with turbo-ionspray ionization in negative ion mode using a precursor ion scan of m/z 69 (CF(3)) and a neutral loss scan of 176 (dehydroglucuronic acid). The subsequent product ion scans of the [M - H] ions of these metabolites yielded the identification of three phase I and four phase II metabolites. The phase I metabolites had hydroxylations at the methyl group or on the phenyl ring of Celecoxib, and the subsequent oxidation product of the hydroxymethyl metabolite formed the carboxylic acid metabolite. The phase II metabolites included four positional isomers of acyl glucuronide conjugates of the carboxylic acid metabolite. These positional isomers were caused by the alkaline pH of the rabbit urine and were not found in rabbit plasma. The chemical structures of the metabolites were characterized by interpretation of their product ion spectra and comparison of their LC retention times and the product ion spectra with those of the authentic synthesized standards.  相似文献   

10.
Boldione (1,4-androstadiene-3,17-dione) is a direct precursor (prohormone) to the anabolic steroid boldenone (1,4-androstadiene-17beta-ol-3-one). It is advertised as a highly anabolic/androgenic compound promoting muscularity, enhancing strength and overall physical performance, and is available on the Internet and in health stores. This work was undertaken to determine and characterize boldione and its metabolites in human urine, using both liquid chromatography with electrospray ionization mass spectrometry and gas chromatography with mass spectrometry and derivatization. Boldione and its three metabolites were detected in dosed human urine after dosing a healthy volunteer with 100 mg boldione. The excretion studies showed that boldione and its metabolites were detectable in urine for 48 h after oral administration, with maximum excretion rates after 1.8 and 3.6 h (boldenone case). The amounts of boldione and boldenone excreted in urine from this 100 mg dose were 34.45 and 15.95 mg, respectively.  相似文献   

11.
12.
13.
The determination of the urinary vitamin D3 metabolites might prove helpful in the assessment of the vitamin D status. We developed a method for the determination of trace vitamin D3 metabolites, 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], in urine using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) combined with derivatization using an ESI-enhancing reagent, 4-(4′-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), and its isotope-coded analogue, 2H4-DAPTAD (d-DAPTAD). The urine samples were treated with β-glucuronidase, purified with an Oasis® hydrophilic–lipophilic balanced (HLB) cartridge, and then subjected to the derivatization. The DAPTAD derivatization enabled the highly sensitive detection (detection limit, 0.25 fmol on the column), and the use of d-DAPTAD significantly improved the assay precision [the intra- (n?=?5) and inter-assay (n?=?3) relative standard deviations did not exceed 9.5 %]. The method was successfully applied to urine sample analyses and detected the increases of the urinary 25(OH)D3 and 24,25(OH)2D3 levels due to vitamin D3 administration. Graphical Abstract
Scheme of procedure for urinary vitamin D3 metabolite analysis based on LC/MS/MS with ESI-enhancing and isotope-coded derivatization.  相似文献   

14.
Using hyphenated analytical techniques, gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS), a study on minor propofol metabolites in human urine was conducted. These techniques allowed identification of two new phase I metabolites (2-(omega-propanol)-6-isopropylphenol and 2-(omega-propanol)-6-isopropyl-1,4-quinol). In addition, their four corresponding conjugates (three glucuronides and one sulphate) were detected. Thus in human urine at least eight conjugate metabolites are produced, derived from four different aglycones (propofol; 2, 6-diisopropyl-1,4-quinol; 2-(omega-propanol)-6-isopropylphenol and 2-(omega-propanol)-6-isopropyl-1,4-quinol).  相似文献   

15.
An analytical method was developed for the determination in urine of 2 metabolites of diazinon: 6-methyl-2-(1-methylethyl)-4(1H)-pyrimidinone (G-27550) and 2-(1-hydroxy-1-methylethyl)-6-methyl-4(1H)-pyrimidinone (GS-31144). Two of the urine sample preparation procedures presented rely on gas chromatography/mass selective detection (GC/MSD) in the selected ion monitoring mode for determination of G-27550. For fast sample preparation and a limit of quantitation (LOQ) of 1.0 ppb, urine samples were purified by using ENV+ solid-phase extraction (SPE) columns. For analyte confirmation at an LOQ of 0.50 ppb, classical liquid/liquid partitioning was used before further purification in a silica SPE column. An SPE sample preparation procedure and liquid chromatography/electrospray ionization/mass spectrometry/mass spectrometry (LC/ESI/MS/MS) were used for both G-27550 and GS-31144. The limit of detection was 0.01 ng for G-27550 with GC/MSD, and 0.016 ng when LC/ESI/MS/MS was used for both G-27550 and GS-31144. The LOQ was 0.50 ppb for G-27550 when GC/MSD and the partitioning/SPE sample preparation procedure were used, and 1.0 ppb for the SPE only sample preparation procedure. The LOQ was 1.0 ppb for both analytes when LC/ESI/MS/MS was used.  相似文献   

16.
The separation and detection of 11 urinary aromatic acids was developed using HPLC-MS/MS. The method features a simple sample preparation involving a single-step dilution with internal standard and a rapid 8 min chromatographic separation. The accuracy was evaluated by the recovery of known spikes between 87 and 110%. Inter- and intra-assay precision (CV) was below 11% in all cases and the analytes were observed to be stable for up to 8 weeks when stored at -20 degrees C. The method was validated based upon linearity, accuracy, precision and stability and was used to establish reference intervals for children and adults.  相似文献   

17.
18.
The metabolism of tanshinone IIA was studied in rats after a single-dose intravenous administration. In the present study, 12 metabolites of tanshinone IIA were identified in rat bile, urine and feces with two LC gradients using LC-MS/MS. Seven phase I metabolites and five phase II metabolites of tanshinone IIA were characterized and their molecular structures proposed on the basis of the characteristics of their precursor ions, product ions and chromatographic retention time. The seven phase I metabolites were formed, through two main metabolic routes, which were hydroxylation and dehydrogenation metabolism. M1, M4, M5 and M6 were supposedly tanshinone IIB, hydroxytanshinone IIA, przewaquinone A and dehydrotanshinone IIA, respectively, by comparing their HPLC retention times and mass spectral patterns with those of the standard compounds. The five phase II metabolites identified in this research were all glucuronide conjugates, all of which showed a neutral loss of 176 Da. M9 and M12 were more abundant than other identified metabolites in the bile, which was the main excretion path of tanshinone IIA and the metabolites. M12 was the main metabolite of tanshinone IIA. M9 and M12 were proposed to be the glucuronide conjugates of two different semiquinones and these semiquinones were the hydrogenation products of dehydrotanshinone IIA and tanshinone IIA, respectively. This hydrogenized reaction may be catalyzed by the NAD(P)H: quinone acceptor oxidoreductase (NQO). The biotransformation pathways of tanshinone IIA were proposed on the basis of this research.  相似文献   

19.
Different approaches for the non‐target detection of corticosteroids in urine have been evaluated. As a result of previous studies about the ionization (positive/negative) and fragmentation of corticosteroids, several methods based on both precursor ion (PI) and neutral loss (NL) scans are proposed. The applicability of these methods was checked by the injection of a standard solution containing 19 model compounds. Five of the studied methods (NL of 76 Da; PI of 77, 91 and 105; PI of 237; PI of 121, 147 and 171; and NL of 38 Da) exhibited satisfactory results at the concentration level checked (corresponding to 20 ng/ml in sample). Some other methods in negative ionization mode such as the NL of 104 Da were found to lack sufficient sensitivity. Some of the applied methods were found to be specific for a concrete structure (NL of 38 Da for fluorine containing corticosteroids) while others showed a wide range applicability (PI of 77, 91 and 105 showed response in all model compounds). Interference by endogenous compounds was also tested by the analysis of negative urines and urines spiked with different corticosteroids. The suitability of these methods for the detection of corticosteroid metabolites was checked by the analysis of urine samples collected after the administration of methylprednisolone and triamcinolone. A combination of the reported methods seems to be the approach of choice in order to have a global overview about the excreted corticosteroid metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Nandrolone (19‐nortestosterone) is an androgenic anabolic steroid illegally used as a growth‐promoting agent in animal breeding and as a performance enhancer in athletics. Therefore, its use was officially banned in 1974 by the Medical Commission of the International Olympic Committee (IOC). Following nandrolone administration, the main metabolites in humans are 19‐norandrosterone, 19‐norethiocolanolone and 19‐norepiandrosterone, and their presence in urine is the basis of detecting its abuse. The present work was undertaken to determine, in human urine, nandrolone metabolites (phase I and phase II) by developing and comparing multiresidue liquid chromatography/tandem mass spectrometry (LC/MS/MS) and gas chromatography/mass spectrometry (GC/MS) methods. A double extraction by solid‐phase extraction (SPE) was necessary for the complete elimination of the interfering compounds. The proposed methods were also tested on a real positive sample, and they allow us to determine the conjugated/free fractions ratio reducing the risk of false positive or misleading results and they should allow laboratories involved in doping control analysis to monitor the illegal use of steroids. The advantages of LC/MS/MS over GC/MS (which is the technique mainly used) include the elimination of the hydrolysis and derivatization steps: it is known that during enzymatic hydrolysis several steroids can be converted into related compounds and deconjugation is not always 100% effective. The validation parameters for the two methods were similar (limit of quantification (LOQ) <1 ng/mL and percentage coefficient of variance (CV%) <16.4), and both were able to confirm unambiguously all the analytes, thus confirming the validity of both techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号