首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Accumulation voltammetry of copper(II) was investigated with a carbon-paste electrode containing salicylideneamino-2-thiophenol(SATP). Copper(II) was accumulated as the copper(II)-SATP complex on the electrode without an applied potential by immersing the electrode in 0.01 mol/l acetate buffer (pH 3.8) containing copper(II). The reduction peak of the copper(II)-SATP complex was observed at –0.12 V (vs. SCE) in 0.01 mol/l acetate buffer (pH 3.8) by scanning the potential in a negative direction. The calibration curve for copper(II) was linear in the range of 2×10–9–1×10–7 mol/l. Since the accumulation of copper(II) is based on a chemical reaction between copper(II) and SATP, copper(II) was selectively accumulated on the electrode. The presented method was applied to the determination of copper(II) in standard reference materials prepared by the National Institute for Environmental Studies.  相似文献   

2.
Guanine is determined at the 5.0×10–10 –2.0×10–7 mol/l level by differential-pulse adsorptive stripping voltammetry at a hanging mercury drop electrode using the reduction peak of its copper (II) complex at –0.21 V vs. Ag-AgCl electrode. The optimum analytical conditions were found to be Britton-Robinson buffer solution (pH 4.8), an accumulation potential of 0.0 V and an accumulation time of 3 min. Under these conditions, the detection limit is 5.0×10–10 mol/l and the relative standard deviation 2.6% for 1.0×10–7 mol/l guanine. The method is compared with the previous voltammetric methods. The presence of some purine derivatives does not interfere.  相似文献   

3.
An extremely sensitive stripping voltammetric procedure for low level measurements of platinum (II, IV) or ruthenium (III, IV) is reported. The method is based on the interfacial accumulation of the platinum (II) or ruthenium (III)-1-(2-pyridylazo)-2-naphthol complex on the surface of a hanging mercury drop electrode, followed by the reduction of the adsorbed complex during the cathodic scan. The peak potential was found to be –0.8 V vs. Ag/AgCl electrode and the reduction current of the adsorbed complex ions of platinum (II) or ruthenium (III) was measured by differential pulse cathodic stripping voltammetry. The optimum experimental conditions were: 1.5×10–7 mol/l of 1-(2-pyridylazo)-2-naphthol solution of pH 9.3, preconcentration potential of –0.2 V, accumulation time of 3 min and pulse amplitude of 50 mV with 4 mV s–1 scan rate in the presence of ethanol-water (30% v/v) — sodium sulphate (0.5 mol/l). Linear response up to 6.4 × 10–8 and 5.1 × 10–8 mol/l and a relative standard deviation (at 1.2×10–8 mol/l) of 2.4 and 1.6% (n=5) for platinum (II) and ruthenium (III) respectively were obtained. The detection limits of platinum and ruthenium were 3.2×10–10 and 4.1×10–10 mol/l, respectively. The electronic spectra of the Pt(II) — PAN and Ru(III) — PAN complexes were measured at pH 9.3 and the stoichiometric ratios of the complexes formed were obtained by the molar ratio method. The effects of some interfering ions on the proposed procedure were critically investigated. The method was found suitable for the sub-microdetermination of ruthenium (IV) and platinum (IV) after their reduction to ruthenium (III) and platinum (II) with sulphur dioxide in acid media. The applicability of the method for the analysis of binary mixtures of ruthenium (III) and (IV) or platinum (II) and (IV) has also been carried out successfully. The method is simple, rapid, precise, and promising for the determination of the tested metal ions at micro-molar concentration level.  相似文献   

4.
The clay mineral montmorillonite has been tested as modifier for the carbon paste electrode with a novel electrode modification technique. The differential pulse voltammetric determination of copper(II) by means of this modified carbon paste electrode has been studied. A detection limit of 4×10-8 mol/l has been achieved after 10 min preconcentration under open circuit conditions with subsequent anodic stripping voltammetry. The calibration curve for Cu(II) is linear in the range of 4×10-8–8×10-7 mol/l. Pb interferes in a 10-fold molar and Cd and Hg in a 100-fold molar excess. The interference by humic ligands is significant.  相似文献   

5.
Summary A new preconcentration and voltammetric determination method for cobalt(II) in aqueous solution with a chemically modified electrode is proposed. The accumulation behaviour and voltammetry of cobalt(II) has been investigated with a carbon paste electrode modified with cationexchanger and 1,10-phenanthroline. The electrochemical response is characterized with respect to carbon paste composition, pH, preconcentration time, cobalt(II) concentration and other variables. For a 3-min preconcentration time, the electrode gives good linearity for 1×10–7 to 4×10–6 mol/l Co(II), a detection limit of 8×10–8 mol/l. The response can be reproduced with a 4.0% relative standard deviation. The method is fairly free from many coexisting ions interferences. A rapid and convenient renewal procedure allows the use of a single electrode in multiple analytical determinations over several days. Satisfactory results are obtained for the determination of cobalt in a variety of certified standard reference materials.  相似文献   

6.
The investigation of the electrochemical reduction and the adsorption of meso-tetra(4-trimethylammoniumphenyl)porphine (T(4-TMAP)P) at a mercury electrode in alkaline solution shows that the overall reduction involves three two-electron steps, of which the first step is reversible and the latter two are irreversible. In addition, T(4-TMAP)P and its metal complexes of Cu(II) and Mg(II) can be strongly adsorbed on the surface of a mercury electrode. The adsorption phenomena have been utilized as a preconcentration step for the determination of trace amounts of the two ions by single sweep polarography. For copper, the detection limit is 1 × 10–8 mol dm–3, for magnesium, 1 × 10–7 mol dm–3, the latter being limited by the reagent blank. The proposed method was applied to the determination of Cu and Mg in various types of samples (chemicals, hair and liver tissues) with satisfactory results.  相似文献   

7.
In the NH4Cl supporting electrolyte, within the pH range from 1 to 5, an irreversible adsorptive reducing wave of salicyl fluorone(SAF) was obtained. The electrode process was verified as follow: On the surface of mercury electrode, the adsorption of SAF obeys Frumkin isotherm.In 0.2 mol/l potassium hydrogen phthalate/HCl buffer solution, at pH 3.0, the sensitive adsorptive complex wave of Ga-SAF was obtained by linear sweep voltammetry. The composition of the electroactive complex was determined as Ga:SAF = 11. The peak height of the complex is proportional to the concentration of Ga(III) in the range of 1.5 × 10–9 to 6.0 × 10–7 mol/l, the detection limit is 1.0× 10–9 mol/l. The proposed method has been applied to the determination of gallium content in aluminium alloys.  相似文献   

8.
A highly selective method for the deter- mination of gold by anodic stripping voltammetry is described. For preconcentration a glassy carbon electrode, activated by deposition of small amounts of gold before the measurement, is proposed. The Au3+ reduction process at such an electrode is effective starting with the potential +0.4 V vs. Ag/AgCl electrode. A linear dependence of the current of the gold stripping peak on the gold concentration was obtained in the range from 5×10–8 to 1×10–6 mol/l. The relative standard deviation for 2×10-7 mol/l HAuCl4 was 4.2% (n=5). The detection limit was 4×10-9 mol/l. The accuracy of the method was verified by the determination of gold in reference materials.  相似文献   

9.
Summary A modified nickel hexacyanoferrate film glassy carbon electrode is prepared by the electrochemical deposition technique. The film is very stable upon voltammetric scanning in the potential range of 1.0 to –0.5 V (vs. SCE) and an oxidation peak occurs at 0.35 V (vs. SCE) (1 mol/l NaNO3). The effects of electrolyte, solvent, coexisting ions and other variables on the voltammetric behaviour of the modified film have been studied. The thickness of the resulting film can be controlled by changing the number of voltammetric cycles and the concentrations of nickel(II) and hexacyanoferrate(III) ions. The film shows catalytic activity towards electrooxidation of thiosulfate with a peak potential +0.5 V (K-containing media). This oxidation potential of thiosulfate on the modified electrode is shifted negatively by about 550 mV as compared to the naked glassy carbon electrode. For practical application, the modified electrode can be used for the determination of thiosulfate in concentrations from 5.0×10–5 to 1.0×10–1 mol/l. This method has been successfully applied to the determination of thiosulfate in photographic waste effluents.  相似文献   

10.
Summary Cobalt(II) can be determined in 0.1 mol/l Na3citrate + 0.1 mol/l NH4Cl + 0.08% dimethylglyoxime as supporting electrolyte in the presence of a 50 000-fold excess of zinc by differential pulse polarography. The limit of determination is 4.2×10–5 mol/l Co (2.5 mg/l). Linear calibration curves are obtained within the range of 1×10–7 to 5×10–6 mol/l cobalt without zinc and in the presence of 5×10–3 mol/l Zn. The analytical method developed is suitable for the determination of cobalt in zinc plant solutions.
Cobaltbestimmung in Gegenwart hoher Zinkkonzentrationen mit Hilfe der Differential-Puls-Polarographie
  相似文献   

11.
A novel chemically modified electrode is prepared on the basis of the attachment of multiwall carbon nanotubes (MWNTs) to the surface of a glassy carbon electrode (GCE) in the presence of a hydrophobic surfactant. The electrochemical behavior of tannins at the MWNTs-modified GCE is investigated. Tannins yield a well-defined oxidation at about 0.30 V (SCE) at the MWNTs-modified GCE. MWNT-film shows remarkable enhancement effect on the oxidation peak current of tannins. The experimental parameters are optimized, and a direct electrochemical method to detect tannins is proposed. The oxidation peak current is proportional to the concentration of tannins over the range from 4 × 10–7 to 2 × 10–4 M, and the detection limit is 1 × 10–7 mol/l after 5 min of accumulation. The relative standard deviation of 6% for determination of 2 × 10–6 mol/l tannins indicates excellent reproducibility. The analysis method is demonstrated by using tea and Chinese gall samples.  相似文献   

12.
A novel solvent polymeric membrane electrode based on bis(1,3,4-thiadiazole) complexes of Hg(II) is described which has excellent selectivity and sensitivity toward iodide ion. The electrode, containing 1,4-bis(5-methyl-1,3,4-thiadiazole-2-yl-thio)butanemercury(II) [Hg(II)BMTB(NO3)4], has a Nernstian potentiometric response from 2.0×10–8 to 2.0×10–2 mol L–1 with a detection limit of 8.0×10–9 mol L–1 and a slope of –59.0±0.5 mV/decade in 0.01 mol L–1 phosphate buffer solution (pH 3.0, 20°C). The selectivity sequence observed is iodide>bromide>thiocyanate>nitrite>nitrate>chloride>perchlorate>acetate>sulfate. The selectivity behavior is discussed in terms of the UV–Vis spectrum, and the process of transfer of iodide across the membrane interface is investigated by use of the AC impedance technique. The electrode was successfully applied to the determination of iodide in Jialing River and Spring in Jinyun Mountains, with satisfactory results.  相似文献   

13.
A new chemically modified electrode (CME), -benzoinoxime (CUPRON) modified carbon paste electrode, for determining copper(II) is reported because of its excellent selectivity and sensitivity. The electrode is made by mixing a quantity of CUPRON (25%, w/w) with graphite powder (50%, w/w) and paraffin oil (25%, w/w). The CME preferentially deposits copper from the pH 8.5 NH3-NH4Cl buffer solution containing copper(II) under an open circuit and most of metal ions do not interfere with the measurements. The detection limit (S/N of three) for determining Cu(II) is 3 × 10–10 g/ml after 10 min accumulation in fast linear scan stripping voltammetric measurement. Linear calibration curves are obtained for Cu(II) concentration ranged from 1 × 10–8 M to 1 × 10–6 M. The response can be maintained with relative standard deviation of 6.0% in a 5 × 10–6 M Cu(II) solution after eight accumulation/measurement/ regeneration cycles at the same electrode surface. The effect resulted from carbon paste preparation, reduction potential, electrode renewal, electrolyte and solution pH, preconcentration time, concentration dependence, possible interference and other variables has been evaluated. As for application, the CME demonstrates its high sensitivity and copper-selectivity in complex composition samples, such as anodic mud and polluted water.  相似文献   

14.
A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0×10–5–1.0×10–1 M and 6.0×10–6–1.0×10–1 M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0×10–6 and 6.0×10–6 M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10–50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4–7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.  相似文献   

15.
Summary An amperometric enzyme sensor composed of a mercury film electrode and an enzyme-immobilized chitosan membrane is developed. This biosensor is based on both a mercury film electrode detecting the consumption of dissolved dioxygen following enzymatic reaction, and a chitosan membrane. The latter provides an excellent permselectivity and excludes electroactive interferents. The detection range of this biosensor was 1.0×10–5–3.0×10–4 mol/l and the relative standard deviation, R.S.D. at 5.0×10–5 mol/l was 1.4% (n=3). This biosensor was applied to the direct determination of L-lactate in human serum without pretreatment.  相似文献   

16.
A new highly selective thiocyanate electrode based on N,N-bis-(furaldehyde)-1,2-phenylenediamine-dipicolyl copper(II) complex [Cu(II)-BFPD] as neutral carrier is described. The electrode has an anti-Hofmeister selectivity sequence: SCN>I>Sal>ClO4 >Br>NO2 >Cl>NO3 >SO4 2–>SO3 2–>H2PO4 and a near-Nernstian potential linear range for thiocyanate from 1.0×10–1 to 5.0×10–6 mol L–1 with a detection limit 2.0×10–6 mol L–1 and a slope of 57.5 mV decade–1 in pH 5.0 of phosphate buffer solution at 20 °C. The response mechanism is discussed on the basis of results from A.C. impedance measurement and UV spectroscopy. The anti-Hofmeister behavior of the electrode results from a direct interaction between the central metal and the analyte ion and a steric effect associated with the structure of the carrier. The electrode has the advantages of simplicity, fast response, fair stability and reproducibility, and low detection limit. The selectivity of electrodes based on [Cu(II)-BFPD] exceeds that of classical anion-sensitive membrane electrodes based on ion exchangers such as lipophilic quaternary ammonium or phosphonium salts. Application of the electrode for determination of thiocyanate in waste water samples from a laboratory and a gas factory, and in human urine samples, is reported. The results obtained were fair agreement with the results obtained by HPLC.  相似文献   

17.
A rapid and sensitive spectrophotometric method for the simultaneous determination of sodium dodecyl sulphate (SDS) and sodium linear-dodecylbenzenesulphonate (DBS) with 1-stearyl-4-(4-aminonaphthylazo)-pyridinium bromide (SAPB) is described using the difference at the maximum absorption wavelength of the SDS- and the DBS-ion associate. SDS and DBS have been determined independently by measuring their respective absorbances at the maximum absorption wavelength. The apparent molar absorptivities of the SDS- and the DBS-ion associate are 8.0×104 l mol–1 cm–1 at 445 nm and 4.5×104 l mol–1 cm–1 at 424 nm, respectively. The calibration graph for SDS is linear in the range from 0.1 to 1.0×10–6 mol/l in the presence of 1.2×10–6 mol/l DBS and for DBS from 0.8 to 2.0×10–6 mol/l in the presence of 8.0×10–7 mol/l SDS. The relative standard deviation (n=15) for 8.0×10–7 mol/l SDS is 3.4% and for 1.6×10–6 mol/l DBS 2.1%. The proposed method has been applied to the simulatenous determination of SDS and DBS in river water samples.  相似文献   

18.
Summary A chemiluminescent method for the determination of vanadium in steel with cinchomeronic hydrazide as analytical reagent is proposed. The optimum conditions are pH 11.75 (phosphate buffer), 1.0×10–3 mol/l cinchomeronic hydrazide, 6.6×10–3 mol/l hydrogen peroxide and 2.8×10–3 mol/l V(IV). The maximum chemiluminescent emission is obtained at 420 nm. A linear relationship exists in the range of 0.04–1.00 g/ml of V(IV) with a 3.6% variation coefficient at 0.50 g/ml of V(IV) level for ten replicates. Cobalt(II), copper(II) and chromium(VI) show strong interference and a chloroform extraction procedure with -benzo-inoxime is recommended to avoid these interferences. This method has been applied to determine vanadium in a certified steel with excellent results.Presented at Euroanalysis VII  相似文献   

19.
The voltammetric behavior of the LMF-Mg(II) complex with DNA at a mercury electrode is reported for the first time. In NH3–NH4Cl buffer (pH=9.10), the adsorption phenomena of the LMF–Mg(II) complex were observed by linear sweep voltammetry. The mechanism of the electrode reaction was found to be a reduction of LMF in the complex, and the composition of the LMF–Mg(II) complex is 2:1. In the presence of calf thymus DNA (ctDNA), the peak current of LMF–Mg(II) complex decreased considerably, and a new well-defined adsorptive reduction peak appeared at −1.63 V (vs. SCE). The electrochemical kinetic parameters and the binding number of LMF–Mg(II) with ctDNA were also obtained. Moreover, the new peak currents of LMF–Mg(II)–DNA system increased linearly correlated to the concentration of DNA in the 4.00×10−7–2.60×10−6 g ml−1 range when the concentrations of LMF–Mg(II) complex was fixed at 5.00×10−6 mol l−1, with the detection limits of 2.33×10−7 g ml−1. An electrostatic interaction was suggested by electrochemical method.  相似文献   

20.
Summary A differential pulse polarographic method for the determination of oxytetracycline in urine and human serum in acid media (HClO4 of pH 2) is proposed. The effects of the amount of sample taken and the concentration of HClO4 present were investigated. The detection limit was 5.5×10–6 mol/l. The standard deviation of the determination of 5.5×10–5 mol/l of oxytetracycline in 2 ml of urine was 1.7×10–6 mol/l and that of the determination of 5.5×10–5 mol/l of oxytetracycline in 2 ml of human serum was 1.9×10–6 mol/l.
Bestimmung von Oxytetracyclin in Urin und Humanserum durch Differential-Pulspolarography
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号