首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
By constructing and numerically solving the kinetic Bloch equations we perform a many-body study of the spin dephasing due to the D‘yakonov-Perel‘ effect in n-type GaAs (100) quantum wells for high temperatures. In our study, we include the spin-conserving scattering such as the electron-phonon, the electron-nonmagnetic impurity as well as the electron-electron Coulomb scattering into consideration. The dephasing obtained from our theory contains both the single-particle and the many-body contributions with the latter originating from the inhomogeneous broadening introduced by the DP term [J. Supercond.: Incorp. Novel Magn. 14 (2001) 245; Eur. Phys. J. B 18 (2000) 373]. Our result agrees very well with the experimental data [Phys. Rev. B 62 (2000) 13034] of Malinowski et al. We further show that in the case we study, the spin dephasing is dominated by the many-body effect.  相似文献   

3.
于莉媛  曹俊诚 《中国物理快报》2004,21(12):2504-2506
We have calculated the intraband photon absorption coefficients of hot two-dimensional electrons interacting with polar-optical phonon modes in quantum wells. The dependence of the photon absorption coefficients on the photon wavelength λ is obtained both by using the quantum mechanical theory and by the balance-equation theory. It is found that the photon absorption spectrum displays a local resonant maximum, corresponding to LO energy, and the absorption peak vanishes with increasing the electronic temperature.  相似文献   

4.
Photoluminescence (PL) spectra of the GaInNAs/GaAs single quantum well (SQW) with different N compositions are carefully studied in a range of temperatures and excitation power densities. The anomalous S-shape temperature dependence of the PL peak is analysed based on the competition and switching-over between the peaks related to N-induced localized states and the peak related to interband excitonic recombination. It is found that with increasing N composition, the localized energy increases and the turning point of the S-shape temperature dependence occurs at higher temperature, where the localized carriers in the handrail states obtain enough thermal activation energy to be dissociated and delocalized. The rapid thermal annealing (RTA)effectively reduces the localized energy and causes a decrease of the switching-over temperature.  相似文献   

5.
Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells grown on a GaAs substrate by molecular beam epitaxy are measured in a range of temperatures and excitation power densities.The energy position of the dominant PL peak shows an anomalous S-shape temperature dependence instead of the Varshni relation.By careful inspection,especially for the PL under lower excitation power density,two near bandedge peaks are well identified.These are assigned to carriers localized in nitrogen-induced bound states and interband excitonic recombinations,respectively.It is suggested that the temperature-induced switch of such two luminescence peaks in relative intensity causes a significant mechanism responsible for the S-shape shift observed in GaInNAs.A quantitative model based on the thermal depopulation of carriers is used to explain the temperature dependence of the PL peak related to N-induced bound states.  相似文献   

6.
We theoretically study the properties of the ground state of a series-coupled double quantum dot embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that two dots can be coupled coherently,which is reflected in the appearance of parity effects and the complex current-phase relation in this system. This system might be a possible candidate for future device applications.  相似文献   

7.
We investigate various methods for the calculation of the electron energy in semiconductor quantum wells and focus on a matrix algorithm method. The results show better fitness of the factor -h^2/2 э/эz 1/m*(z) э/эz than that of -h^2/2 1/m*(z) э^2/эz^2 in the first part of the Schro^edinger equation. The effect of nonparabolicity in the conduction band is also discussed.  相似文献   

8.
We study the quantum behaviour of a quasi-integrable Hamiltonian.The unperturbed Hamiltonian displays degeneracies of energy levels,which become avoided crossing under a nonintegrable perturbation.In this two-dimensional system,the quantum Poincare section plot is constructed in the coherent state representation with the restriction that the centres of the wavepackets are confined at thd classical surface of constant energy.It is found that the quantum Poincare section plot obtained in this way provides an evident counterpart of the classical system.  相似文献   

9.
We investigate the third-order nonlinear absorption and dispersion of femto- and atto-second polarization beats between the one-photon degenerate four-wave mixing process and the two-photon nondegenerate four-wave mixing process in the pure homogeneously-broadened reverse V-three-level using twin noisy fields. The third-order nonlinear response can be controlled and modified by the colour-locked correlation of twin noisy fields. Most importantly, the coherent phase control in optical heterodyne detection for studying the phase dispersion of the third-order susceptibility is demonstrated. The radiation-matter detuning oscillation is also considered in the freauencv domain.  相似文献   

10.
The nonradiative recombination effect on carrier dynamics in GalnNAs/GaAs quantum wells is studied by timeresolved photoluminescence (TRPL) and polarization-dependent TRPL at various excitation intensities. It is found that both recombination dynamics and spin relaxation dynamics strongly depend on the excitation intensity. Under moderate excitation intensities the PL decay curves exhibit unusual non-exponential behaviour. This result is well simulated by a rate equation involving both the radiative and non-radiative recombinations via the introduction of a new parameter of the effective concentration of nonradiative recombination centres in the rate equation. In the spin dynamics study, the spin relaxation also shows strong excitation power dependence. Under the high excitation power an increase of spin polarization degree with time is observed. This new finding provides a useful hint that the spin process can be controlled by excitation power in GaInNAs systems.  相似文献   

11.
A coupling structure of CdSe quantum dots (QDs) and a ZnCdSe quantum well (QW) is fabricated by using the molecular-beam epitaxy technique. The effect o~ temperature on the photoluminescence (PL) of the structure is studied. The results reveal that the activation energy of exciton dissociation in the coupling QDs/QW structure is much higher than that of simple CdSe QDs, which is attributed to the exciton tunnelling from the QW to QDs through a thin ZnSe barrier layer. The results also reveal that the position and width of the emission band of the QDs vary discontinuously at certain temperatures. This phenomenon is explained by the QD ionization and exciton tunnelling from the QW to the QDs. It is demonstrated that the coupling structure significantly improves the PL intensity of CdSe QDs.  相似文献   

12.
In the effective mass approximation, the binding energy of an exciton bound to a neutral donor (D^0, X) is calculated variationally for rectangular GaAs quantum-well wires (QWWs) by using a three-parameter wavefunction. The Coulomb interaction terms are treated exactly in their full three-dimensional forms throughout the calculation, especially in the case of (D^0, X), which is a more physically realistic procedure than those employed in previous calculations which used effective one-dimensional potential [Chin. Phys. Lett. 21 (2004) 919]. Our treatment is unique in the use of a two-dimensional Fourier expansion of the Coulomb potential, which removes the numerical difficulty with the 1/r singularity and considerably reduces the computational effort. In addition, we also calculate the binding energies of(D^0, X) when the donor is in different positions (at the centre, boundary and corner). The average interparticle distances in the square QWWs are discussed.  相似文献   

13.
郭汝海  时红艳  孙秀冬 《中国物理》2004,13(12):2141-2146
The quantum confined Stark effect (QCSE) of the self-assembled InAs/GaAs quantum dots has been investigated theoretically. The ground-state transition energies for quantum dots in the shape of a cube, pyramid or “truncated pyramid” are calculated and analysed. We use a method based on the Green function technique for calculating thestrain in quantum dots and an efficient plane-wave envelope-function technique to determine the ground-state electronic structure of them with different shapes. The symmetry of quantum dots is broken by the effect of strain. So the properties of carriers show different behaviours from the traditional quantum device. Based on these results, we also calculate permanent built-in dipole moments and compare them with recent experimental data. Our results demonstrate that the measured Stark effect in self-assembled InAs/GaAs quantum dot structures can be explained by including linear grading.  相似文献   

14.
15.
Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800℃ for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8 meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1 eV, respectively.  相似文献   

16.
We give an analytical result for the quantum Fisher information of entangled coherent states in a lossy Mach-Zehnder interferometer recently proposed by Joo et al., [Phys. Rev. Lett. 107 (2011) 083601]. For small loss of photons, we find that the entangled coherent state can surpass the Heisenberg limit. Phrthermore, the formalism developed here is applicable to the study of phase sensitivity of multipartite entangled coherent states.  相似文献   

17.
Inx Ga1-x N/GaN multiple quantum well (MQW) samples with strain-layer thickness larger/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.  相似文献   

18.
周霞  郑厚植 《中国物理快报》2005,22(5):1222-1224
We have calculated the photoelectric response in a specially designed double barrier structure. It has been verified that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.  相似文献   

19.
Using a simple two-parameter wavefunction,we calculate variationally the binding energy of positively and negatively charged excitons in GaAs/AlxGa1-xAs quantum wells for well widths from 10 to 300A.We consider the effect of effective mass,dielectric constant mismatch in the two materials,and the whole correlation among the particles.The results are discussed and compared in detail with previous experimental and theoretical results,which show fair agreement with them.  相似文献   

20.
Based on the band anticrossing model, the effects of the strain-compensated layer and the strain-mediated layero n the band structure, gain and differential gain of GalnNAs/GaAs quantum well lasers have been investigated. The results show that the GaNAs barrier has a disadvantage in increasing the density of states in the conduction band. Meanwhile, the multilayer quantum wells need higher transparency carrier density than the GalnNAs/GaAs single quantum well with the same wavelength. However, they help to suppress the degradation of the differential gain. The calculation also shows that from the viewpoint of band structure, the strain-compensated structure and the strain-mediated structure have similar features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号