首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the FeNC catalyst widely used in the oxygen reduction reaction (ORR), its instability under fuel cell (FC) operating conditions has become the biggest obstacle during its practical application. The complexity of the degradation process of the FeNC catalyst in FCs poses a huge challenge when it comes to revealing the underlying degradation mechanism that directly leads to the decay in ORR activity. Herein, using density functional theory (DFT) and ab initio molecular dynamics (AIMD) approaches and the FeN4 moiety as an active site, we find that during catalyzing the ORR, Fe site oxidation in the form of *Fe(OH)2, in which 2OH* species are adsorbed on Fe on the same side of the FeN4 plane, results in the successive protonation of N and then permanent damage to the FeN4 moiety, which causes the leaching of the Fe site in the form of Fe(OH)2 species and a sharp irreversible decline in the ORR activity. However, other types of OH* adsorption on Fe in the form of HO*FeOH and *FeOH intermediates cannot cause the protonation of N or any breaking of Fe–N bonds in the FeN4 moiety, only inducing the blocking of the Fe site. Meanwhile, based on the competitive relationship between catalyzing the ORR and Fe site oxidation, we propose a trade-off potential (URHETMOR) to describe the anti-oxidation abilities of the TM site in the TMNX moiety during the ORR.

We summarize possible catalyst degradation mechanisms during the ORR. Protonation on an N atom of bare FeNC catalysts is difficult, leaching of the Fe site is also likely to happen, due to successive N protonation that destroys the FeN4 moiety releasing Fe(OH)2 species.  相似文献   

2.
A route to various substituted phosphine phosphonic acid compounds of the general form Ar(2)PC(6)H(4)PO(OH)(2) (Ar = Ph, o-MeC(6)H(4), o-MeOC(6)H(4)) has been investigated. These compounds were employed as bidentate anionic [P,O] ligands in neutral palladium complexes. The [P,O] chelating coordination was determined by X-ray crystallography of a representative palladium complex. Furthermore, the bifunctional ligand Ph(2)PC(6)H(4)PO(OH)Ph represents the first example of a chelating anionic [P,O] ligand resulting from the combination of a phosphine and a phosphinate moiety.  相似文献   

3.
We report a facile synthesis of Fe-N-C catalysts based on the surface functionalization of multi-walled carbon nanotubes (MWCNTs), which show high activity and stability for oxygen reduction reaction (ORR) in acid. Fe-N-MWCNT catalysts, whose ORR mass activities could vary by 3-4 times depending on the choice of Fe precursors, were found to have considerably higher ORR mass activity and higher stability than N-modified MWCNTs (N-MWCNTs). The Fe-N-MWCNT catalyst with a dominant Fe-N(x) moiety (with x ≈ 4) and a surface Fe/C ratio of ~0.004 exhibits the highest ORR mass activity in acid (~0.7 mA mg(-1)(Fe-N-MWCNT) at 0.8 V vs. RHE), where the lower mass activity of other Fe-N-MWCNT catalysts can be attributed to lower Fe/C ratios and Fe-N(x) moieties (with x smaller than 4) as revealed from X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Moreover, the enhanced stability of Fe-N-MWCNTs in comparison to N-MWCNTs can be attributed to less H(2)O(2) production during ORR as determined from rotating ring disk electrode (RRDE) measurements, and higher activity for H(2)O(2) electro-reduction by rotating disk electrode (RDE) measurements. The large surface Fe/C ratio and Fe-N(x) moiety corresponding to high ORR activity and stability of Fe-N-MWCNTs demonstrate that surface functionalization can be very helpful to graft active catalytic sites onto carbon nanostructures, and to provide insights into the ORR mechanism of non-noble metal catalysts (NNMCs) for proton exchange membrane fuel cells (PEMFCs).  相似文献   

4.
Several routes to a complex phosphinate phosphapeptide analogous to the gamma-glutamyl peptide Glu-gamma-Glu have been investigated. Formation of gamma-phosphono glutamate derivatives via addition of a phosphorus-based radical to protected vinylglycine was found to be of limited value because of the elevated temperatures required. Alkylation and conjugate addition reactions of trivalent phosphorus (P(III)) species were investigated. In situ generation of bis-trimethylsilyl esters of phosphinous acids proved to be an effective route to phosphinates of modest structural complexity. However, this chemistry could not be extended to the incorporation of an amino acid moiety at the N-terminal side of the desired phosphinate. A successful synthesis of the target phosphinate phosphapeptide was effected using P(III) chemistry and dehydrohalogenation to yield an alpha,beta-unsaturated phosphinic acid ester, following which conjugate addition of diethylacetamido malonate and acid-mediated hydrolysis afforded the desired phosphinate phosphapeptide. Coupling of the unprotected phosphinate phosphapeptide with two acyl azides derived from folic acid and methotrexate led to the corresponding pteroylphosphapeptides of interest as possible mimics of tetrahedral intermediates in the reaction catalyzed by folylpolyglutamate synthetase.  相似文献   

5.
Iron-nitrogen-carbon materials have been known as the most promising non-noble metal catalyst for proton-exchange membrane fuel cells (PEMFCs), but the genuine active sites for oxygen reduction reaction (ORR) are still arguable. Herein, by the thorough density functional theory investigations, we unravel that the planar Fe2N6 site exhibits excellent ORR catalytic activity over both FeN3 and FeN4 sites, and the potential-determining step is determined to be the *OH hydrogenation step with an overpotential of 0.415 V. The ORR activity of Fe2N6 site originates from the low spin magnetic moment (1.11 μB), which leads to high antibonding states and low d-band center of the Fe center, further leads to weak binding strength of *OH species. The density of FeN4 sites only has little influence on the ORR activity owing to the similar interaction between active site and intermediates in ORR. Our research sheds light on the activity origin of iron-nitrogen-carbon materials for ORR.  相似文献   

6.
Alterations in activities of one family of proteases, the matrix metalloproteinases (MMPs), have been implicated in primary and metastatic tumor growth, angiogenesis, and pathological degradation of extracellular matrix (ECM) components, such as collagen and laminin. Since hydrolysis of the collagen triple-helix is one of the committed steps in ECM turnover, we envisioned modulation of collagenolytic activity as a strategy for creating selective MMP inhibitors. In the present study, a phosphinate transition state analogue has been incorporated within a triple-helical peptide template. The template sequence was based on the alpha1(V)436-450 collagen region, which is hydrolyzed at the Gly(439)-Val(440) bond selectively by MMP-2 and MMP-9. The phosphinate acts as a tetrahedral transition state analogue, which mimics the water-bound peptide bond of a protein substrate during hydrolysis. The phosphinate replaced the amide bond between Gly-Val in the P1-P1' subsites of the triple-helical peptide. Inhibition studies revealed Ki values in the low nanomolar range for MMP-2 and MMP-9 and low to middle micromolar range for MMP-8 and MMP-13. MMP-1, MMP-3, and MT1-MMP/MMP-14 were not inhibited effectively. Melting of the triple-helix resulted in a decrease in inhibitor affinity for MMP-2. The phosphinate triple-helical transition state analogue has high affinity and selectivity for the gelatinases (MMP-2 and MMP-9) and represents a new class of protease inhibitors that maximizes potential selectivity via interactions with both prime and nonprime active site subsites as well as with secondary binding sites (exosites).  相似文献   

7.
As one kind of metal-organic frameworks (MOFs), Ni3(HITP)2 has recently been demonstrated to manifest high oxygen reduction reaction (ORR) performance due to its unique structure and property. However, the origin of the high activity of this experimentally synthesized material remains ambiguous. Herein, we performed detailed theoretical studies on the electrocatalytic ORR of the Ni3(HITP)2 monolayer. The calculated results uncover that, in addition to the traditional NiN catalytic site, the H atoms directly bonded to the N atoms can also act as the active site for ORR, with the activity even higher than that of NiN moiety. The relative energy diagrams show that the favorable ORR pathway on all possible active sites is the two-electron reduction mechanism from O2 to H2O2, which is well consistent with the experimental observations. Furthermore, the first-principles molecular dynamics simulations show that Ni3(HITP)2 also presents excellent thermodynamic stability.  相似文献   

8.
Since dual-metal single-atom catalyst (CoZnN/C) has been experimentally synthesized by atomically arching CoZn on N-doped carbon nanofibers and exhibited potential electrocatalysis activity towards oxygen reduction reaction (ORR), we perform first-principles calculations to identify the highly active sites at different defects by comparing the four-step ORR processes on the constructed four CoZnN6 models on graphene. The corresponding N-edge effect, dopant effect, and C-edge ring-closing effect are evaluated with the ORR evolution on different bonding environments, including pristine CoZnN6(OH), nanoribbon (NR) along zigzag direction, substitution of carbon/oxygen (C/O substitution), and C-edge ring-closing configurations. OH-ligand is shown to significantly improve the ORR activities for all the considered structures. Especially, C-substituted CoZnN6(OH), NR-CoZnN5O(OH) and CoZnN6(OH) with C-edge-effect exhibit obviously reduced overpotentials (ηlim=0.28, 0.48 and 0.41 V) of rate-determining steps among all the considered nine candidates. By plotting the relationship between the limiting potentials (Ulim) and free energies of intermediate *OH (ΔGOH*), two prior catalysts of pristine-CoZnN5C(OH) and defect-CoZnN6CH(OH) are located near the top of the volcano curve with higher Ulim=0.95 and 0.82 V than Pt(111) (Ulim=0.80 V), implying that C-substitution could facilitate ORR performance in pristine- and defect-CoZnN6(OH) bonding situation.  相似文献   

9.
Xia WS  Zhu RS  Lin MC  Mebel AM 《Faraday discussions》2001,(119):191-205; discussion 255-74
The potential energy surface (PES) of the CH3OH system has been characterized by ab initio molecular orbital theory calculations at the G2M level of theory. The mechanisms for the decomposition of CH3OH and the related bimolecular reactions, CH3 + OH and 1CH2 + H2O, have been elucidated. The rate constants for these processes have been calculated using variational RRKM theory and compared with available experimental data. The total decomposition rate constants of CH3OH at the high- and low-pressure limits can be represented by k infinity = 1.56 x 10(16) exp(-44,310/T) s-1 and kAr0 = 1.60 x 10(36) T-12.2 exp(-48,140/T) cm3 molecule-1 s-1, respectively, covering the temperature range 1000-3000 K, in reasonable agreement with the experimental values. Our results indicate that the product branching ratios are strongly pressure dependent, with the production of CH3 + OH and 1CH2 + H2O dominant under high (P > 10(3) Torr) and low (P < 1 atm) pressures, respectively. For the bimolecular reaction of CH3 and OH, the total rate constant and the yields of 1CH2 + H2O and H2 + HCOH at lower pressures (P < 5 Torr) could be reasonably accounted for by the theory. For the reaction of 1CH2 with H2O, both the yield of CH3 + OH and the total rate constant could also be satisfactorily predicted theoretically. The production of 3CH2 + H2O by the singlet to triplet surface crossing, predicted to occur at 4.3 kcal mol-1 above the H2C...OH2 van der Waals complex (which lies 82.7 kcal mol-1 above CH3OH), was neglected in our calculations.  相似文献   

10.
The manganese-oxo "cubane" core complex Mn(4)O(4)L(1)(6) (1, L(1) = Ph(2)PO(2-)), a partial model of the photosynthetic water oxidation site, was shown previously to undergo photodissociation in the gas phase by releasing one phosphinate anion, an O(2) molecule, and the intact butterfly core cation (Mn(4)O(2)L(1)(5+)). Herein, we investigate the photochemistry and electronic structure of a series of manganese-oxo cubane complexes: [Mn(4)O(4)L(2)(6)] (2), 1(+)(ClO(4-)), 2(+)(ClO(4-)), and Mn(4)O(3)(OH)L(1)(6) (1H). We report the atomic structure of [Mn(4)O(4)L(2)(6)](ClO(4)), 2(+)(ClO(4-)) [L(2) = (4-MeOPh)(2)PO(2-)]. UV photoexcitation of a charge-transfer band dissociates one phosphinate, two core oxygen atoms, and the Mn(4)O(2)L(5)(+) butterfly as the dominant (or exclusive) photoreaction of all cubane derivatives in the gas phase, with relative yields: 1H > 2 > 1 > 2(+) > 1(+). The photodissociation yield increases upon (1) reducing the core oxidation state by hydrogenation of a corner oxo (1H), (2) increasing the electron donation from the phosphinate ligand (L(2)), and (3) reducing the net charge from +1 to 0. The experimental Mn-O bond lengths and Mn-O bond strengths and the calculated ligand binding energy explain these trends in terms of weaker binding of phosphinate L(2) versus L(1) by 14.7 kcal/mol and stronger Mn-(mu(3)-O)(core) bonds in the oxidized complexes 2(+) and 1(+) versus 2 and 1. The calculated electronic structure accounts for these trends in terms of the binding energy and antibonding Mn-O(core) and Mn-O'(ligand) character of the degenerate highest occupied molecular orbital (HOMO), including (1) energetic destabilization of the HOMO of 2 relative to 1 by 0.75 eV and (2) depopulation of the antibonding HOMO and increased ionic binding in 1(+) and 2(+) versus 1 and 2.  相似文献   

11.
A new potentially multidentate hexaprotic ligand H(6)[TETA-(PO)(2)] has been prepared by reaction of ethylenediamine-N,N'-diacetic acid (EDDA), paraformaldehyde, and phosphinic acid; its coordination properties with three lanthanide ions (La(3+), Gd(3+), and Lu(3+)) have been explored. The structures of the complexes were studied in aqueous solution by potentiometric pH titrations and by (31)P NMR spectroscopy. Four acidity constants were determined potentiometrically in the range 2.5 < pH < 14. The four measured pK(a) values can be divided into two groups, and within each group the initial deprotonation was found to have little effect on the second. Variable temperature (31)P and (31)P[(1)H] EXSY NMR spectra showed that, for [Lu(TETA-(PO)(2))](3-), the two phosphorus atoms exist in different chemical environments and undergo an exchange process which is very fast on the NMR time scale at room temperature. This result is consistent with one of the phosphinate residues coordinating the metal ion and exchanging with a free analogue. In the case of [La(TETA-(PO)(2))](3-), only one temperature invariant signal is observed in (31)P NMR spectra; it corresponds to both phosphinate residues remaining uncoordinated to La(3+). The stability of [Ln(TETA-(PO)(2))](3-) has an order of La(3+) > Gd(3+) > Lu(3+). The coordination of one phosphinate residue to Lu(3+) brings the metal ion closer to the plane of four nitrogens and farther from the four carboxylate arms, resulting in [Lu(TETA-(PO)(2))](3-) having a lower stability than the corresponding La(3+) and Gd(3+) complexes. A pM-pH distribution diagram showed that introducing two phosphinate groups into TETA renders [Gd(TETA-(PO)(2))](3-) more stable than [Gd(TETA)](-). The selectivity factor of the ligand for Gd(3+) vs Ca(2+), Zn(2+), and Cu(2+) has been calculated, and the hydration number for [Dy(TETA-(PO)(2))](3-) has been measured by (17)O NMR spectroscopy to be zero.  相似文献   

12.
Hydroxylamine oxidoreductase (HAO) from the autotrophic bacterium Nitrosomonas europaea catalyzes the 4-e- oxidation of NH2-OH to NO2-. The e- are transferred from NH2OH to an unusual 5-coordinate heme known as P460, which is the active site of HAO, and from there to an array of seven c-type hemes. NO., generated by laser flash photolysis of N,N'-bis(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine, is found to act as a 1-e- donor to HAO. Most likely NO. binds P460 to yield a [Fe(NO)]6 moiety, which then hydrolyzes to give the reduced enzyme and NO2-. The [Fe(NO)]6 moiety is also a plausible final intermediate in the oxidation of NH2OH.  相似文献   

13.
The oxygen electroreduction mechanism on the V- and Nb-doped nitrogen-codoped (6,6)armchair carbon nanotube with incorporated MN4 fragment has been studied using the ωB97XD and PBE density functional theory approaches. The metal center in MN4 fragment and the adjacent NCCN double bond (C2 site) of the support have been revealed as active centers. The metal active centers turned out to be irreversibly oxidized at the first step of ORR affording stable O*, 2O*, or O*HO* adsorbates depending on the applied electrode potential U, that makes them no longer active in ORR. Therefore, the C2 site comes at the forefront in ORR catalysis. Among the metal oxidized forms M(O)N4 , M(O)(O)N4 , and M(O)(OH)N4 CNT, the C2 site of the latter turned out to be most active for 4e dissociative ORR. For both metals the last protonation/electron transfer step, HO* + H* → H2O, is the rate-limiting step. The alternative hydrogen peroxide formation is not only thermodynamically less favorable but also kinetically slower than the 4e dissociative ORR route on the C2 site of model M(O)(OH)N4 CNT catalyst.  相似文献   

14.
Even though phosphinate and its analogs are very important guests in nature, the artificial receptors which are capable of selective recognition of phosphinate are rare. Here, we report a series of acetate and phosphinate selective hosts (1, 2 and 3) which utilize amide NH and aliphatic CH groups as hydrogen bonding donors. In this series of receptors, even though the amide NH hydrogen bonding element was found to be the most significant, by varying the polarity of CH group, the magnitude of recognition could be modulated considerably. The affinities of host 3 against all the tested anion guests showed significantly higher affinities compared with those of hosts 1 and 2, and this could be attributed to the difference of CH group polarities among the receptors 1, 2 and 3. Cα-H hydrogen in host 3 is the most highly polarized by the charged pyridinium group. Therefore, it is the strongest host in this series of hosts. From the experiments shown here, we demonstrated the importance of CH hydrogen bonding element as a decisive modulating moiety for anionic recognition.  相似文献   

15.
李文杰  田东旭  杜红  燕希强 《电化学》2021,27(4):357-365
燃料电池的阴极反应的反应动力学速率非常慢,限制了燃料电池技术的发展。因此,寻找低成本、高活性的氧还原催化剂具有重要的意义。多元金属核壳团簇表现出优良的氧还原活性。在本文中,以原子个数为19、38、55和79的八面体团簇作催化剂模型,采用密度泛函理论(GGA-PBE-PAW)方法,研究了一系列不同尺寸核壳Nim@Mn-m (n = 19, 38, 55, 79;m = 1, 6, 13, 19; M = Pt, Pd, Cu, Au, Ag)团簇催化剂的活性规律。优化*O、*OH和*OOH吸附中间体结构,计算了吸附自由能和反应吉布斯自由能,以超电势为催化活性的描述符,研究了单原子Pt嵌入Nim@Aun-m团簇的活性规律。结果表明,Ni6@Pt1Au31具有最好的ORR活性,并且Ni1@Pt1Au17、Ni6@Pt1Au31、Ni13@Pt1Au41、Ni19@Pt1Au5表现出比Pt38团簇以及Pt(111)表面更高的催化活性。Bader电荷和态密度分析表面,核壳之间的电荷转移以及单原子Pt嵌入Nim@Aun-m表面,改变了吸附位的电子性质,降低了*OH的吸附强度,提高了ORR活性。单原子Pt嵌入Nim@Aun-m表面可能是一种合适的多元金属核壳ORR催化剂设计策略。  相似文献   

16.
The cationic iridium complex [Ir(OH(2))(2)(phpy)(2)](+) (phpy = o-phenylpyridine) is among the most efficient mononuclear catalysts for water oxidation. The postulated active species is the oxo complex [Ir(O)(X)(phpy)(2)](n), with X = OH(2) (n = +1), OH(-) (n = 0) or O(2-) (n = -1), depending on the pH. The reactivity of these species has been studied computationally at the DFT(B3LYP) level. The three [Ir(O)(X)(phpy)(2)](n) complexes have an electrophilic Ir(v)-oxo moiety, which yields an O-O bond by undergoing a nucleophilic attack of water in the critical step of the mechanism. In this step, water transfers one proton to either the Ir(V)-oxo moiety or the ancillary X ligand. Five different reaction pathways associated with this acid/base mechanism have been characterized. The calculations show that the proton is preferably accepted by the X ligand, which plays a key role in the reaction. The higher the basicity of X, the lower the energy barrier associated with O-O bond formation. The anionic species, [Ir(O)(2)(phpy)(2)](-), which has the less electrophilic Ir(V)-oxo moiety but the most basic X ligand, promotes O-O bond formation through the lowest energy barrier, 14.5 kcal mol(-1). The other two active species, [Ir(O)(OH)(phpy)(2)] and [Ir(O)(OH(2))(phpy)(2)](+), which have more electrophilic Ir(V)-oxo moieties but less basic X ligands, involve higher energy barriers, 20.2 kcal mol(-1) and 25.9 kcal mol(-1), respectively. These results are in good agreement with experiments showing important pH effects in similar catalytic systems. The theoretical insight given by the present study can be useful in the design of more efficient water oxidation catalysts. The catalytic activity may increase by using ligand scaffolds bearing internal bases.  相似文献   

17.
This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.  相似文献   

18.
The development of fuel cells as clean-energy technologies is largely limited by the prohibitive cost of the noble-metal catalysts needed for catalyzing the oxygen reduction reaction (ORR) in fuel cells. A fundamental understanding of catalyst design principle that links material structures to the catalytic activity can accelerate the search for highly active and abundant nonmetal catalysts to replace platinum. Here, we present a first-principles study of ORR on nitrogen-doped graphene in acidic environment. We demonstrate that the ORR activity primarily correlates to charge and spin densities of the graphene. The nitrogen doping and defects introduce high positive spin and/or charge densities that facilitate the ORR on graphene surface. The identified active sites are closely related to doping cluster size and dopant-defect interactions. Generally speaking, a large doping cluster size (number of N atoms >2) reduces the number of catalytic active sites per N atom. In combination with N clustering, Stone-Wales defects can strongly promote ORR. For four-electron transfer, the effective reversible potential ranges from 1.04 to 1.15 V/SHE, depending on the defects and cluster size. The catalytic properties of graphene could be optimized by introducing small N clusters in combination with material defects.  相似文献   

19.
A series of poly{(3‐hexylthiophene)‐co‐[3‐(6‐hydroxyhexyl)thiophene]}:titania (P3HT‐OH:TiO2) hybrids were synthesized via the in situ polycondensation of titanium (IV) n‐butoxide in the presence of P3HT‐OH. Introducing a hydroxyl moiety onto the side‐chain of poly(3‐hexylthiophene) (P3HT) significantly promotes the polymer‐titania interaction, resulting in the formation of homogeneous hybrid colloids. The UV‐vis spectra of P3HT‐OH:TiO2 films demonstrate that TiO2 markedly affects the stacking structure and the chain conformation of P3HT‐OH. The maximum absorption wavelength of these hybrid materials can be tailor‐made by merely varying the weight percentage of TiO2. Moreover, P3HT‐OH:TiO2 can be further utilized as an efficient compatibilizer in preparing photoactive P3HT:P3HT‐OH:TiO2 films with excellent miscibility. The photovoltaic cell based on such a hybrid exhibited a 2.4‐fold higher value of power‐conversion efficiency compared to the cell based on P3HT:TiO2.

  相似文献   


20.
The atom-cluster interaction has recently been exploited as an effective way to increase the performance of metal-nitrogen-carbon catalysts for oxygen reduction reaction (ORR). However, the rational design of such catalysts and understanding their structure-property correlations remain a great challenge. Herein, we demonstrate that the introduction of adjacent metal (M)−N4 single atoms (SAs) could significantly improve the ORR performance of a well-screened Fe atomic cluster (AC) catalyst by combining density functional theory (DFT) calculations and experimental analysis. The DFT studies suggest that the Cu−N4 SAs act as a modulator to assist the O2 adsorption and cleavage of O−O bond on the Fe AC active center, as well as optimize the release of OH* intermediates to accelerate the whole ORR kinetic. The depositing of Fe AC with Cu−N4 SAs on nitrogen doped mesoporous carbon nanosheet are then constructed through a universal interfacial monomicelles assembly strategy. Consistent with theoretical predictions, the resultant catalyst exhibits an outstanding ORR performance with a half-wave potential of 0.92 eV in alkali and 0.80 eV in acid, as well as a high power density of 214.8 mW cm−2 in zinc air battery. This work provides a novel strategy for precisely tuning the atomically dispersed poly-metallic centers for electrocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号