首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin conversion, (SC), compounds are composed of molecules organized around a transition metal ion. The ion spin value is smaller for the ion fundamental level than for its first excited one. So, increasing the temperature changes the spin mean value. This spin conversion can be continuous or can display a first order phase transition called spin transition. The atom phonon coupling model, introduced recently, allows to describe at least qualitatively different experimental results. Up to now, this model has been applied on a linear chain of atoms. In this paper we apply it on a square lattice. We study the thermal variations of different thermodynamic parameters and the metastable states which are present around the transition. In this study, it is expected that the critical point of some (SC) compounds can be reached by applying on them a small hydrostatic pressure; it is also expected that ultrasound pulses can induce, at a very low temperature, a conversion between the stable low spin state and the metastable high spin state and it is also predicted that the crystal sound velocity can display a discontinuity at the first order phase transition.  相似文献   

2.
The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving field. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chiral states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.  相似文献   

3.
The ultracold polar molecules with the tunable dipole-dipole interaction, not only would enable explorations of a large class of exotic many-body physics phenomena, but also could be used for quantum information processing. In the present paper we demonstrate that this dipole-dipole interaction can generate the degenerate chiral quantum states acting as a qubit robust against noise when the ultracold polar molecules are confined by a triangular lattice. Moreover, we also find two first-order quantum phase transitions by controlling an external driving field. One is the transition with the change of the different degenerate chiral quantum states. The other is the transition with the breaking of the degenerate quantum chiral states to the nondegenerate state. In experiment, these first-order quantum phase transitions can be detected by measuring the collective molecular population.  相似文献   

4.
We discuss an effective spin-glass Hamiltonian which can be used to study the glassy-like dynamics observed in the metastable states of the Hamiltonian mean field (HMF) model. By means of the Replica formalism, we were able to find a self-consistent equation for the glassy order parameter which reproduces, in a restricted energy region below the phase transition, the microcanonical simulations for the polarization order parameter recently introduced in the HMF model.  相似文献   

5.
We present Monte Carlo results for the hadron mass-spectrum in lattice SU(3) using the Wilson action and the quenched approximation. We show that on a 63· 10 lattice at β=6.0, there exist long-lived metastable states of the gauge-field, characterized by the eigenvalues of Z(3) and associated with the first-order deconfining phase transition. The hadron masses are very different in these state if the quark paths that wind around the lattice are not removed. We demonstrate two methods which eliminate a significant fraction of such quark paths. The final results for hadron masses do not agree with the experimental values. We find that the π and ?, as well as the proton and the Δ are degenerate.  相似文献   

6.
We investigate the barriers separating metastable states in the spherical p-spin glass model using the instanton method. We show that the problem of finding the barrier heights can be reduced to the causal two-real-replica dynamics. We find the probability for the system to escape one of the highest energy metastable states and the energy barrier corresponding to this process.  相似文献   

7.
We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.  相似文献   

8.
A simplified thermodynamic approach of the incompressible 2D Euler equation is considered based on the conservation of energy, circulation and microscopic enstrophy. Statistical equilibrium states are obtained by maximizing the Miller-Robert-Sommeria (MRS) entropy under these sole constraints. We assume that these constraints are selected by properties of forcing and dissipation. We find that the vorticity fluctuations are Gaussian while the mean flow is characterized by a linear [`(w)]-y\overline{\omega}-\psi relationship. Furthermore, we prove that the maximization of entropy at fixed energy, circulation and microscopic enstrophy is equivalent to the minimization of macroscopic enstrophy at fixed energy and circulation. This provides a justification of the minimum enstrophy principle from statistical mechanics when only the microscopic enstrophy is conserved among the infinite class of Casimir constraints. Relaxation equations towards the statistical equilibrium state are derived. These equations can serve as numerical algorithms to determine maximum entropy or minimum enstrophy states. We use these relaxation equations to study geometry induced phase transitions in rectangular domains. In particular, we illustrate with the relaxation equations the transition between monopoles and dipoles predicted by Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)]. We take into account stable as well as metastable states and show that metastable states are robust and have negative specific heats. This is the first evidence of negative specific heats in that context. We also argue that saddle points of entropy can be long-lived and play a role in the dynamics because the system may not spontaneously generate the perturbations that destabilize them.  相似文献   

9.
We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.  相似文献   

10.
A definition of metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance is discussed. In particular, we identify a crucial condition that distinguishes genuine metastable states from other types of slowly decaying modes and which leads to properties similar to those postulated in the restricted ensemble approach [1]. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible. As a concrete application of our formalism we present preliminary results on a 2D kinetic Ising model.  相似文献   

11.
We study the branches of equilibrium states of rigid polymer rods with the Onsager excluded volume potential in two-dimensional space. Since the probability density and the potential are related by the Boltzmann relation at equilibrium, we represent an equilibrium state using the Fourier coefficients of the Onsager potential. We derive a non-linear system for the Fourier coefficients of the equilibrium state. We describe a procedure for solving the non-linear system. The procedure yields multiple branches of ordered states. This suggests that the phase diagram of rigid polymer rods with the Onsager potential has a more complex structure than that with the Maier-Saupe potential. A study of free energy indicates that the first branch of ordered states is stable while the subsequent branches are unstable. However, the instability of the subsequent branches does not mean they are not interesting. Each of these unstable branches, under certain external potential, can be made metastable, and thus may be observed.  相似文献   

12.
13.
The dynamical mean field theory (DMFT) has emerged as one of the most importantframeworks for theoretical investigations of strongly correlated lattice models and realmaterial systems. Within DMFT, a lattice model can be mapped onto the problem of amagnetic impurity embedded in a self-consistently determined bath. The solution of thisimpurity problem is the most challenging step in this framework. The available numericallyexact methods such as quantum Monte Carlo, numerical renormalization group or exactdiagonalization are naturally unbiased and accurate, but are computationally expensive.Thus, approximate methods, based e.g. on diagrammatic perturbation theory have gainedsubstantial importance. Although such methods are not always reliable in various parameterregimes such as in the proximity of phase transitions or for strong coupling, theadvantages they offer, in terms of being computationally inexpensive, with real frequencyoutput at zero and finite temperatures, compensate for their deficiencies and offer aquick, qualitative analysis of the system behavior. In this work, we have developed such amethod, that can be classified as a multi-orbital iterated perturbation theory (MO-IPT) tostudy N-folddegenerate and non degenerate Anderson impurity models. As applications of the solver, wehave embedded the MO-IPT within DMFT and explored lattice models like the single orbitalHubbard model, covalent band insulator and the multi-orbital Hubbard model fordensity-density type interactions in different parameter regimes. The Hund’s couplingeffects in case of multiple orbitals is also studied. The limitations and quality ofresults are gauged through extensive comparison with data from the numerically exactcontinuous time quantum Monte Carlo method (CTQMC). In the case of the single orbitalHubbard model, covalent band insulators and non degenerate multi-orbital Hubbard models,we obtained an excellent agreement between the Matsubara self-energies of MO-IPT andCTQMC. But for the degenerate multi-orbital Hubbard model, we observe that the agreementwith CTQMC results gets better as we move away from particle-hole symmetry. We have alsointegrated MO-IPT+DMFT with density functional theory based electronic structure methodsto study real material systems. As a test case, we have studied the classic, stronglycorrelated electronic material, SrVO3. A comparison of density of states and photo emissionspectrum (PES) with results obtained from different impurity solvers and experimentsyields good agreement.  相似文献   

14.
We show that optical spectroscopy of Rydberg states can provide accurate in situ thermometry at room temperature. Transitions from a metastable state to Rydberg states with principal quantum numbers of 25-30 have 200 times larger fractional frequency sensitivities to blackbody radiation than the strontium clock transition. We demonstrate that magic-wavelength lattices exist for both strontium and ytterbium transitions between the metastable and Rydberg states. Frequency measurements of Rydberg transitions with 10(-16) accuracy provide 10 mK resolution and yield a blackbody uncertainty for the clock transition of 10(-18).  相似文献   

15.
Phase change materials based on chalcogenide alloys play an important role in optical and electrical memory devices. Both applications rely on the reversible phase transition of these alloys between amorphous and metastable cubic states. However, their atomic arrangements are not yet clear, which results in the unknown phase change mechanism of the utilization. Here using ab initio calculations we have determined the atomic arrangements. The results show that the metastable structure consists of special repeated units possessing rocksalt symmetry, whereas the so-called vacancy positions are highly ordered and layered and just result from the cubic symmetry. Finally, the fast and reversible phase change comes from the intrinsic similarity in the structures of the amorphous and metastable states.  相似文献   

16.
We investigate the bifurcation of time-periodic states from a stationary state destabilized by the undamping of a set of modes associated with a degenerate pair of complex-conjugate frequencies. This problem is of particular interest for bifurcations in driven systems with symmetry whose order-parameter dimension n is even and n ≥ 4. For this case of a degenerate Hopf bifurcation a star of symmetry-equivalent limit cycles bifurcates in analogy to the star of symmetry-related domains arising at a symmetry-breaking phase transition in equilibrium systems. We illustrate this fact by analyzing a concrete example with n = 4. Within the framework of an amplitude expansion, we explicitly construct the time-periodic states and discuss their stability. In particular, it is shown that fairly general conclusions for the bifurcation behaviour can be drawn on the sole basis of the knowledge of the order-parameter symmetry.  相似文献   

17.
We study the thermodynamic behavior of a continuum system with competing periodicities. We show that in addition to commensurate and incommensurate phases, there exist configurations which are chaotic in nature and exhibit no long-range order. These phases are metastable and characterized by an order parameter with a continuous spectrum. By transforming the problem of determining the ground states of the system into a classical mechanics problem, we construct a two-dimensional area-preserving map which can be used to study the qualitative nature of the orbits. Our results might be of relevance to adsorbed monolayers on periodic substrates.  相似文献   

18.
We perform path integral Monte Carlo simulations to study the imaginary time dynamics of metastable supercooled superfluid states and nearly superglassy states of a one component fluid of spinless bosons square wells. Our study shows that the identity of the particles and the exchange symmetry is crucial for the frustration necessary to obtain metastable states in the quantum regime. Whereas the simulation time has to be chosen to determine whether we are in a metastable state or not, the imaginary time dynamics tells us if we are or not close to an arrested glassy state.  相似文献   

19.
We study the stability of soap films of a nonionic surfactant under different applied capillary pressures on the film. Depending on the pressure, either a thick common black film (CBF), or a micro-scopically thin Newton black film (NBF) is formed as a (metastable) equilibrium state, with a first-order (discontinuous) transition between the two. Studying the dynamics of the CBF-NBF transition, it is found that under certain conditions a hysteresis for the transition is observed: for a given range of pressures, either of the two states may be observed. We quantify the nucleation process that is at the basis of these observations both experimentally and theoretically.  相似文献   

20.
We present a definition for metastable states applicable to arbitrary finite state Markov processes satisfying detailed balance. In particular, we identify a crucial condition that distinguishes metastable states from other slow decaying modes and which allows us to show that our definition has several desirable properties similar to those postulated in the restricted ensemble approach. The intuitive physical meaning of this condition is simply that the total equilibrium probability of finding the system in the metastable state is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号