首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exact series solutions for planar creeping flows of Oldroyd-B fluids in the neighbourhood of sharp corners are presented and discussed. Both reentrant and non-reentrant sectors are considered. For reentrant sectors it is shown that more than one type of series solution can exist formally, one type exhibiting Newtonian-like asymptotic behaviour at the corner, away from walls, and another type exhibiting the same kind of asymptotics as an Upper Convected Maxwell (UCM) fluid. The solutions which are Newtonian-like away from walls are shown to develop non-integrable stress singularities at the walls when the no-slip velocity boundary condition is imposed. These mathematical solutions are therefore inadmissible from the physical viewpoint under no-slip conditions. An inadmissible solution, with stress singularities which are not everywhere integrable, is identified among the solutions of UCM-type. For a 270° reentrant sector the radial behaviour of the normal stress is everywhere r−0.613. In the viscometric region near a wall, the radial normal stress σrr behaves like (rε)−0.613, where ε is the angle made with the wall. In addition σrθ is infinite (not integrable) at the wall even when r is non-zero. Another UCM-type solution has a normal stress behaviour away from walls which is r−0.985 for 270° sector. Again, this solution has a non-integrable stress singularity and is therefore inadmissible. Finally, for non-reentrant sectors it is shown that the flow is always Newtonian-like away from walls.  相似文献   

2.
The optimal dimensions of convective-radiating circular fins with variable profile, heat-transfer coefficient and thermal conductivity, as well as internal heat generation are obtained. A profile of the form y=(w/2) [1+(r o/r) n ] is studied, while variation of thermal conductivity is of the form k=k o[1+ɛ((TT )/ (T bT )) m ]. The heat-transfer coefficient is assumed to vary according to a power law with distance from the bore, expressed as h=K[(rr o)/(r er o)]λ. The results for λ=0 to λ=1.9, and −0.4≤ɛ≤0.4, have been expressed by suitable dimensionless parameters. A correlation for the optimal dimensions of a constant and variable profile fins is presented in terms of reduced heat-transfer rate. It is found that a (quadratic) hyperbolic circular fin with n=2 gives an optimum performance. The effect of radiation on the fin performance is found to be considerable for fins operating at higher base temperatures, whereas the effect of variable thermal conductivity on the optimal dimensions is negligible for the variable profile fin. It is also observed, in general, that the optimal fin length and the optimal fin base thickness are greater when compared to constant fin thickness. Received on 22 February 1999  相似文献   

3.
Crack repair using an elastic filler   总被引:2,自引:0,他引:2  
The effect of repairing a crack in an elastic body using an elastic filler is examined in terms of the stress intensity levels generated at the crack tip. The effect of the filler is to change the stress field singularity from order 1/r1/2 to 1/r(1-λ) where r is the distance from the crack tip, and λ is the solution to a simple transcendental equation. The singularity power (1-λ) varies from (the unfilled crack limit) to 1 (the fully repaired crack), depending primarily on the scaled shear modulus ratio γr defined by G2/G1=γrε, where 2πε is the (small) crack angle, and the indices (1, 2) refer to base and filler material properties, respectively. The fully repaired limit is effectively reached for γr≈10, so that fillers with surprisingly small shear modulus ratios can be effectively used to repair cracks. This fits in with observations in the mining industry, where materials with G2/G1 of the order of 10-3 have been found to be effective for stabilizing the walls of tunnels. The results are also relevant for the repair of cracks in thin elastic sheets.  相似文献   

4.
We consider the three-dimensional flow through an aperture in a plane either with a prescribed flux or pressure drop condition. We discuss the existence and uniqueness of solutions for small data in weighted spaces and derive their complete asymptotic behaviour at infinity. Moreover, we show that each solution with a bounded Dirichlet integral, which has a certain weak additional decay, behaves like O(r −2) as r=|x|→∞ and admits a wide jet region. These investigations are based on the solvability properties of the linear Stokes system in a half space ℝ + 3 . To investigate the Stokes problem in ℝ + 3 , we apply the Mellin transform technique and reduce the Stokes problem to the determination of the spectrum of the corresponding invariant Stokes-Beltrami operator on the hemisphere.  相似文献   

5.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

6.
The steady planar sink flow through wedges of angle π/α with α≥1/2 of the upper convected Maxwell (UCM) and Oldroyd-B fluids is considered. The local asymptotic structure near the wedge apex is shown to comprise an outer core flow region together with thin elastic boundary layers at the wedge walls. A class of similarity solutions is described for the outer core flow in which the streamlines are straight lines giving stress and velocity singularities of O(r−2) and O(r−1), respectively, where r1 is the distance from the wedge apex. These solutions are matched to wall boundary layer equations which recover viscometric behaviour and are subsequently also solved using a similarity solution. The boundary layers are shown to be of thickness O(r2), their size being independent of the wedge angle. The parametric solution of this structure is determined numerically in terms of the volume flux Q and the pressure coefficient p0, both of which are assumed furnished by the flow away from the wedge apex in the r=O(1) region. The solutions as described are sufficiently general to accommodate a wide variety of external flows from the far-field r=O(1) region. Recirculating regions are implicitly assumed to be absent.  相似文献   

7.
8.
Let f be a function on the set Lin of all tensors (= square matrices) on a vector space of arbitrary dimension. If f is rotationally invariant (with respect to the left and right multiplication by proper orthogonal tensors), it has a representation through a symmetric even function of the signed singular values of the tensor argument A∈Lin. It is shown that f is of class C r ,r=0,1,...,∞, if and only if is of class C r , and an inductive formula is given for the derivatives D r f. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
10.
The near tip field of mode II crack that grows in thin bodies with power hardening or perfectly plastic behavior is analyzed. It is shown that for power hardening behavior, the pseudo plane stress field possesses the logarithm singularity, i.e. σ (ln r)2/(n−1), (ln r)2n/(n − 1), where r is the distance from the crack tip, n the hardening exponent is σn. When n → ∞ the solution reduced to that for the perfectly plastic case.  相似文献   

11.
We obtain the linear viscoelastic shear moduli of complex fluids from the time-dependent mean square displacement, <Δr 2(t)>, of thermally-driven colloidal spheres suspended in the fluid using a generalized Stokes–Einstein (GSE) equation. Different representations of the GSE equation can be used to obtain the viscoelastic spectrum, G˜(s), in the Laplace frequency domain, the complex shear modulus, G *(ω), in the Fourier frequency domain, and the stress relaxation modulus, G r (t), in the time domain. Because trapezoid integration (s domain) or the Fast Fourier Transform (ω domain) of <Δr 2(t)> known only over a finite temporal interval can lead to errors which result in unphysical behavior of the moduli near the frequency extremes, we estimate the transforms algebraically by describing <Δr 2(t)> as a local power law. If the logarithmic slope of <Δr 2(t)> can be accurately determined, these estimates generally perform well at the frequency extremes. Received: 8 September 2000/Accepted: 9 March 2000  相似文献   

12.
Let W(F) = φ(λ 1 s + λ 2 s + λ 3 s ) + ψ(λ 1 r λ 2 r + λ 1 r λ 3 r + λ 2 r λ 3 r ) + f(λ 1 λ 2 λ 3) be a stored energy function. We prove that, for this function, rank-one convexity is equivalent to polyconvexity.under suitable assumptions on φ, ψ and f.  相似文献   

13.
The purpose of this paper is to analyze the homogeneous consecutive chemical reactions carried out in an annular reactor with non-Newtonian laminar flow. The fluids are assumed to be characterized by a Ostwald-de Waele (powerlaw) model and the reaction kinetics is considered of general order. Effects of flow pseudoplasticity, dimensionless reaction rate constants, order of reaction kinetics and ratio of inner to outer radii of reactor on the reactor performances are examined in detail.Nomenclature c A concentration of reactant A, g.mole/cm3 - c B concentration of reactant B, g.mole/cm3 - c A0 inlet concentration of reactant A, g.mole/cm3 - C 1 dimensionless concentration of A, c A/c A0 - C 2 dimensionless concentration of B, c B/c A0 - C 1 dimensionless bulk concentration of A - C 2 dimensionless bulk concentration of B - D A molecular diffusivity of A, cm2/sec - D B molecular diffusivity of B, cm2/sec - k A first reaction rate constant, (g.mole/cm3)1–m /sec - k B second reaction rate constant, (g.mole/cm3)1–n /sec - K 1 dimensionless first reaction rate constant, k A r 0 2 c A0 m–1 /D A - K 2 dimensionless second reaction rate constant, k B r 0 2 c A0 n–1 /D B - K apparent viscosity, dyne(sec) m /cm2 - m order of reaction kinetics - n order of reaction kinetics - P pressure, dyne/cm2 - r radial coordinate, cm - r i radius of inner tube, cm - r max radius at maximum velocity, cm - r o radius of outer tube, cm - R dimensionless radial coordinate, r/r o - s reciprocal of rheological parameter for power-law model - u local velocity, cm/sec - u max maximum velocity, cm/sec - u bulk velocity, cm/sec - U dimensionless velocity, u/u - z axial coordinate, cm - Z dimensionless axial coordinate, zD A/r 0 2 /u - ratio of molecular diffusivity, D B/D A - ratio of inner to outer radius of reactor, r i/r o - ratio of radius at maximum velocity to outer radius, r max/r o  相似文献   

14.
A MHD generator with a novel geometry is analyzed as a possible dc power source. The generator channel consists of two coaxial cylinders with a smooth annular space between them through which pressure driven ionized gas flows axially. Magnetic poles and electrodes separated by insulators are embedded in both the inner and outer cylinders. A one-dimensional steady state analysis is presented. It is shown that the internal impedance of the generator is a very sensitive function of the ratio of areas of the charge collecting electrodes to that of the magnetic poles. The generator efficiency analysis, on the other hand, indicates that there is an optimum area ratio corresponding to the maximum conversion efficiency. A comparison of the performance characteristics of this generator with those of a generator of rectangular cross section is presented. The average gas temperature and velocity, the magnetic flux density at the poles, and the volume displacement rate, etc., are assumed identical for the two cases in comparison. It is inferred that the novel channel analyzed herein is, in general, superior to the simple rectangular channel in the energy conversion scheme.Nomenclature a n - 2a width of the rectangular channel - a 1n , a 2n , b 1n , b 2n constants - B magnetic flux density, both induced and applied - B r0 maximum value of radial component of B at r=r i - B 0 applied magnetic field in the rectangular generator = B r0 - 2b height of the rectangular channel - C n r i r o n +r o r i n - C –n r i r o n +r o r i –n - c integration constant - D n - E electric field strength - maximum value of azimuthal component of E at r=r i - G n C –n r n +C n r n - G –n C –n r nC n r n - H n G n r –1 - H –n G –n r –1 - I r total radial current between a pair of opposite electrodes - j electric current density - p pressure of the ionized gas - P number of magnetic poles in each cylinder of the generator - P HT power loss due to heat transfer to the walls - P i power input - P o power output - R ic internal impedance of the coaxial channel MHD generator consisting of an opposite pair of electrodes associated with the magnetic poles, insulators, and the channel in between, for a unit length of the channel - R ir internal impedance of the rectangular generator for a unit length of the channel = a/b - R 0 external load connected to the MHD generator - r radial coordinate of the cylindrical coordinate system - r i, r o radii of the inner and outer cylinders, respectively - V fluid velocity - z axial coordinate of the cylindrical coordinate system - n nP/2 - azimuthal coordinate of the cylindrical coordinate system - e electrode angular width - pi pole-insulator angular width - electrical conductivity of the ionized gas - permeability of the medium - v coefficient of viscosity - (r, ) electric potential - (r i, )–(r o, ) potential difference between an opposite pair of electrodes - conversion efficiency of a MHD generator A paper based on some of this material was presented at the International Electron Devices Meeting, Washington (D.C.) October 1967.  相似文献   

15.
The effective permeability of a heterogeneous porous medium   总被引:5,自引:0,他引:5  
The effective (single-phase) permeability of an (infinite) heterogeneous porous medium is studied using a formalism of Green's functions. We give formal expressions for it in the form of a series expansion involving the microscopic random-permeability field many-body correlation functions of higher and higher order.The particular case of a log-normal medium of infinite extent is studied using field-theoretical methods. Using partial series resummation techniques, we derivea formula up to all orders in the local correlations which was first reckoned by many authors by means of a first-order calculation. The formula — which remains an approximation — works whatever the dimensionality of the space, and gives the following simple estimate for the effective permeability in 3 D:K eff=k 1/33. The method is general and the approximations can be systematically improved on when more complex situations are studied.Roman Letters D number of dimensions of the space in which the flow takes place - f(r) body force field,N - f(q) Fourier-transformed body-force field, Nm3 - G 0(r, r) Green's function of the Laplace operator, m–1 - g(k,r, r) velocity propagator before averaging, m–1 - G(r, r) velocity propagator after averaging, m–1 - j(r) a scalar dimensionless field - k(r) local value of the permeability at point r, m2 - K eff effective permeability - K g geometric average of the local permeability, m2 - l typical size of the averaging volume, m - L characteristic length of the porous medium or of the reservoir, m - L(r, r) projection operator, m–2 - M(r, r) scattering operator, m–3 - p(r) local value of the pressure, Nm–2 - p(k,r, r) pressure propagator before averaging, m–1 - P(r, r) pressure propagator after averaging, m–1 - r position vector, m - r modulus of vectorr, m - unit vector pointing in the direction ofr - q Fourier wave vector, m–1 - q modulus of the Fourier wave-vectorq, m–1 - unit vector pointing in the direction ofq - projector over vector - 1 unit tensor - X(r) a local random variable - ¯X(r) volume averaged local random variable - X (r) ensemble averaged local random variable - V large-scale averaging volume, m3 - Z(j) generating functional of a random field - Z(r,j) modified generating functional of a random field - Z normalization factor Greek Letters 0 average value of the logarithm of the permeability - (r) fluctuation of the logarithm of permeability at pointr - viscosity of the fluid, Nt/m2 - (r–r) two-point correlation function of the fluctuations of the logarithm of the permeability - k correlation length of the permeability correlation function, m - u correlation length of the velocity correlation function, m  相似文献   

16.
The unsteady natural convection boundary layer flow over a semi-infinite vertical cylinder is considered with combined buoyancy force effects, for the situation in which the surface temperature T w(x) and C w(x) are subjected to the power-law surface heat and mass flux as K(T /r) = −ax n and D(C /r) = −bx m . The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson method. Numerical results are obtained for different values of Prandtl number, Schmidt number ‘n’ and ‘m’. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt and Sherwood numbers are shown graphically. The local Nusselt and Sherwood number of the present study are compared with the available result and a good agreement is found to exist. Received on 7 July 1998  相似文献   

17.
In the present paper the steady boundary-layer flows induced by permeable stretching surfaces with variable temperature distribution are investigated under the aspect of Reynolds' analogy r = St x /C f(x). It is shown that for certain stretching velocities and wall temperature distributions, “Reynolds' function”r, i.e. the ratio of the local Stanton number St x and the skin friction coefficient C f(x) equals −1/2 for any value of the Prandtl number Pr and of the dimensionless suction/injection velocity f w. In all of these cases, the dimensionless temperature field ϑ is connected to the dimensionless downstream velocity f by the simple relationship ϑ=(f )Pr. It is also shown that in the general case, Reynolds' function r may possess several singularities in f w. The largest of them represents a critical value, so that for f w<f w,crit the solutions of the energy equation (although they still satisfy all the boundary conditions) become nonphysical.  相似文献   

18.
Results of one-dimensional numerical simulations of the parameters of the converging strong shock wave generated by electrical underwater explosions of a cylindrical wire array with different array radii and different deposited energies are presented. It was shown that for each wire array radius there exists an optimal duration of the energy deposition into the exploding array, which allows one to maximize the shock wave pressure and temperature in the vicinity of the implosion axis. The simulation results agree well with the 130-GPa pressure in the vicinity of the implosion axis that was recently obtained, which strongly indicates the azimuthal symmetry of the converging shock wave at these extreme conditions. Also, simulations showed that using a pulsed power generator with a stored energy of ~200 kJ, the pressure and temperature at the shock wave front reaches ~220 GPa and 1.7 eV at 0.1 mm from the axis of implosion in the case of a 2.5 mm radius wire array explosion. It was found that, in spite of the complicated equation of state of water, the maximum pressure at the shock wave front at radius r can be estimated as P ≈ (P*(r*/r) α , where P* is the known value of pressure at the shock wave front at radius r* ≥ r and α is a parameter that equals 0.62±0.02. A rough estimate of the implosion parameters of the hydrogen target after the interaction with the converging strong shock wave is presented as well.  相似文献   

19.
The temperature distribution in a semi-infinite insulated cylinder with linear temperature dependent heat conductivity and with arbitrary initial temperature subjects at its base to an azimuthal symmetric arbitrary heat flux is found.This is done in two stages: first the problem is solved by assuming a constant initial temperature and constant thermal properties and then the solution is extended to the case in which the heat conductivity varies linearly with temperature provided that the diffusivity is constant and the initial temperature is an arbitrary function. Several particular cases are then checked and found to be in agreement with known solutions.Because of the complexity of the above mentioned solution a more simple solution is developed which corresponds to the case in which the cylinder base can be considered as semi-infinite. Then, the case in which the heat flux has the form (A exp [–r 2/r 0 2 ]+G) sin t is considered. Two particular cases are considered correspond to narrow and wide beams of heat flux density. In each case the time of maximum temperature and the maximum temperature at the base centre is found.  相似文献   

20.
In this paper the stress and displacement fields near an embedded crack corner in a linear elastic medium are analytically computed. The conical-spherical coordinate system is introduced to solve this problem. It is observed that the strength of the stress singularity depends on the angle of the crack corner. The singularity becomes weaker, varying from r -1 to r 0, as the angle of the crack corner varies from 360° to 0°. Both symmetric and skew-symmetric loadings give the same variation of the behavior of the stress singularity. It is also found that the order of the singularity is independent of the Poisson's ratio, unlike the corner cracks at a free surface where Poisson's ratio affects the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号