首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-frequency part of the magnetic resonance spectrum of the hexagonal six-sublattice quasi-one-dimensional antiferromagnet CsMnBr3 at temperatures which are low compared with T N =8.3 K is investigated experimentally. A temperature-dependent gap Δ(T) is found in the spectrum ω e (H) of the lower AFMR branch; this gap is due to the hyperfine interaction of the nuclear spins with the electronic spins of the (55Mn)2+ ions. The spectrum of the low-lying resonance frequencies of such a system is calculated taking this interaction into acount in the approximation of fluctuationless spin hydrodynamics for the electronic branch of the oscillations. The computational results are in good qualitative and satisfactory quantitative agreement with experiment. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 433–437 (25 September 1996)  相似文献   

2.
A method of obtaining high polarization and pure spin states of impurity nuclei with a moderately strong quadrupole interaction in solid diamagnetic hosts whose nuclei have spin 1/2, a large g factor (like 1H and 19F), and a high degree of polarization is proposed. The method employs cross-relaxation transitions of the impurity nuclei with the host spins (with adiabatic variation of the external magnetic field) and simple radio-frequency pulses that invert the host nuclei or give rise to two-spin resonance of the host and impurity nuclei. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 7, 539–543 (10 October 1998)  相似文献   

3.
The evolution of the longitudinal magnetization of nuclear spins in a cw high-frequency magnetic field has been measured using a SQUID magnetometer at liquid-helium temperatures in magnetic fields H 0 of up to 57 Oe. The time T m for thermal mixing of the Zeeman and dipolar systems has been found to range between 0.05 and 4×102 s. For T m>1 s the function T m(H 0) is exponential. The proton NMR spectra near the fundamental and twice the Larmor frequency have been obtained. The shift in the resonance with respect to the Larmor frequency is close to the theoretical prediction. Zh. éksp. Teor. Fiz. 114, 1006–1017 (September 1998) Deceased.  相似文献   

4.
The longitudinal and transverse relaxation rates of 19F nuclei in Pr2CuO4−x Fx (x=0.20) samples are measured at high temperatures (150 K<T<600 K). A feature is found in the temperature dependence of the relaxation rates at temperature T′≅300 K. The magnetic properties of the electronic superconductor Pr2CuO4−x Fx as a possible system with a stripe ordering of carriers and spins are discussed. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 4, 328–332 (25 February 1997)  相似文献   

5.

We report a magnetization, magnetostriction, electrical resistivity, specific heat and neutron scattering study of a UNi2/3Rh1/3Al single crystal, a solid solution of an antiferromagnet UNiAl and a ferromagnet URhAl. The huge uniaxial magnetic anisotropy confining the principal magnetic response to the c axis in the parent compounds persists also for the solid solution. The magnetization curve at 1.6 K has a pronounced S shape with an inflection at 12 T. The temperature dependence of magnetic susceptibility exhibits a maximum around 10 K and is magnetic history dependent at lower temperatures where the resistivity increases linearly with decreasing temperature. The low-temperature ρ(T) anomaly is removed in a magnetic field applied along c, which yields a large negative magnetoresistance amounting to m46 zin 14T (at 2 K). The C/T values exhibit a minimum around 12 K and below 8 K they become nearly constant (about 250 mJ mol?1 K?2), which is strongly affected by magnetic fields. Neutron scattering data confirm a non-magnetic ground state of UNi2/3Rh1/3Al. The bulk properties at low temperatures are tentatively attributed to the freezing of U magnetic moments with antiferromagnetic correlations. The additional intensities detected on top of nuclear reflections in neutron diffraction in a magnetic field applied along c are found to be proportional to the field-induced magnetization, which reflects field-induced ferromagnetic coupling of U magnetic moments. This scenario is corroborated also by finding low-temperature magnetostriction data that also scale with the square of magnetization.  相似文献   

6.
The field dependence of the nuclear spin-lattice relaxation (SLR) of cold implanted 82Br (T ≤ 25 mK) in α-Fe single crystals was investigated with nuclear magnetic resonance of oriented nuclei (NMR/ON) at low temperatures as experimental technique. The SLR at the lattice sites with the hyperfine fields found by earlier NMR/ON experiments was measured as a function of the applied external magnetic field B ext parallel to the three principle axes [100], [110] and [111] of the iron single crystal. The data were evaluated with the full relaxation formalism in the single impurity limit and for comparison also with the often employed model of a single exponential function with an effective relaxation time T 1′. With a phenomenological model the high field values of the relaxation rates r ∞, [100]′ = 6.6(2) · 10−15 T2sK−1, r ∞, [110] = 5.4(2) · 10−15 T2sK−1 and r ∞, [111] = 5.2(1) · 10−15 T2sK−1 were obtained.  相似文献   

7.
A composite material of a polyethylene matrix filled by a fine silver powder was prepared with different Ag contents and physical behaviours ranging from insulator to conductor. Ac differential magnetic susceptibility χ measurements show the samples are paramagnetic up to an Ag concentration of ∼65%. At low temperatures the composite is spin-glass type, whereas the transition from insulator to conductor corresponds to an abatement of χ at zero magnetizing field. Magneto-conductivity effects have been observed in resistivity measurements at low temperatures. They can be explained in terms of an effective exchange electronic scattering mechanism between the conduction electrons and the diluted magnetic moments arising from unpaired electron spins of boundary silver particles. Moreover, the presence of a broad minimum in the resistivity curve at T = ∼ 20 K, observed in samples with an Ag concentration just above the percolation threshold, addresses to possible interference effects similar to those reported in disordered materials. Received 17 October 2000 and Received in final form 22 February 2001  相似文献   

8.
The NMR spectrum of the quasi-one-dimensional easy-plane antiferromagnetic CsMnBr3, which has trigonal spin lattice, is investigated in detail. The measurements were performed on a wide-band NMR decimeter microwave-band spectrometer over a wide range of magnetic fields at temperatures 1.3–4.2 K. All three branches of the NMR spectrum previously found by us [JETP Lett. 64, 225 (1996)] are severely distorted because of the dynamic interaction with the Goldstone mode in the antiferromagnetic resonance spectrum. The experimental results in fields up to 40 kOe are described satisfactorily by an equation obtained by Zaliznyak et al. [JETP Lett. 64, 473 (1996)]. Formulas are obtained in our work that agree very well with experiment at all fields up to the “collapse” field H c of all sublattices. The unbiased NMR frequency in CsMnBr3 is determined to be v n0=416 MHz (T=1.3 K) in zero external magnetic field, and in this way the reduction in the spontaneous moment due to the quasi-one-dimensional nature of the system of Mn2+ spins, which according to our data amounts to 28%, is determined more accurately. The field dependences of the directions of the magnetic sublattices with respect to the magnetic field are obtained from the NMR spectra, confirming the equations of Chubukov [J. Phys. Condens. Matter 21, 441 (1988)]. The results on the field dependence of the width and intensities of the NMR lines are discussed, along with three observed anomalies: 1) a strong increase in the NMR frequency for nuclei in sublattices that are perpendicular to the magnetic field; 2) the nonmonotonic temperature dependence of the resonance field for the lower branch of the spectrum; 3) the presence of two branches of the NMR spectrum in large H c fields, in which the CsMnBr3 must be a quasi-one-dimensional antiferromagnetic. Zh. éksp. Teor. Fiz. 113, 352–368 (January 1998) Deceased.  相似文献   

9.
The temperature and magnetic-field dependences of the resistivity ρ and Hall effect R(jab, Bc) in a Nd1.82Ce0.18CuO4−δ single crystal film (T c =6 K) is investigated at temperatures 1.4≤T≤20 K and magnetic fields 0≤B≤5.5 T. At the lowest temperature T=1.4 K the resistive state (exhibiting resistivity and the Hall effect) arises in a magnetic field B=0.5 T. A transition to the normal state is completed at B c 2≃3 T, where the Hall coefficient becomes nearly constant. The negative magnetoresistance due to the weak-localization effect in the normal state is observed for B>3 T. The nonmonotonic behavior and the inversion of the sign of R(B) in the mixed state are explained in a reasonable way by the flux-flow model with the effect of pinning taken into account. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 6, 407–411 (25 September 1996) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

10.
The results of an experimental investigation of the temperature dependences of the magnetic susceptibility and resistivity in the shape-memory ferromagnetic alloys Ni2+x Mn1−x Ga (x=0–0.20) are reported. A T−x phase diagram is constructed on the basis of these data. It is shown that partial substitution of Ni for Mn causes the temperatures of the structural (martensitic) T M and magnetic T C (Curie point) phase transitions to converge. In the region where T C =T M the transition temperature increases linearly with magnetic field in the range from 0 to 10 kOe. The kinetics of a magnetic-field-induced martensitic phase transition is investigated, and the velocities of the martensite-austenite interphase boundary during direct and reverse transitions are measured. A theoretical model is proposed and the T−x phase diagram is calculated. It is shown that there exist concentration ranges where the magnetic and martensitic transitions merge into a first-order phase transition. The theoretical results are in qualitative agreement with experiment. Zh. éksp. Teor. Fiz. 115, 1740–1755 (May 1999)  相似文献   

11.
We study the process of magnetic ordering in planar antiferromagnetic systems with a Kagomé lattice. It is found that if the interaction between next-nearest-neighbor spins is taken into account, the heat capacity of such systems has a singularity at a finite temperature T. On the basis of a scaling analysis of finite-size systems we study the behavior of thermodynamic quantities in the neighborhood of a phase transition. We find that the phase transition at the critical point is due to discrete-and continuous-symmetry breaking, in which the long-range chiral order and the power-law translational spin order emerge simultaneously. Finally, we calculate the temperatures of the transition to different (with three and nine spins per unit cell) ordered states. Zh. éksp. Teor. Fiz. 113, 2209–2220 (June 1998)  相似文献   

12.
A comparative study of the longitudinal ρ xx and transverse ρ xy resistivities and magnetic susceptibility χ ac of La0.8Sr0.2MnO3 single crystals and ceramic samples has been conducted in a wide range of temperatures T=1.7–370 K and magnetic fields, H=0–13.6 T. It turned out that the relation ρ xy ρ xx , which is expected to hold in the case of carrier scattering by magnetic fluctuations, applies to the single crystals. In polycrystals, an additional H-dependent contribution to the resistivity tentatively attributed to plane (near grain boundaries) and bulk “defects” of the magnetic sublattice has been detected. The scattering of carriers by these defects does not make a notable contribution to the anomalous Hall effect and magnetic susceptibility χ ac. As a result, the curve of ρ xy versus ρ xx seems to be steeper than a linear dependence. Under the assumption that the materials under investigation are metals with constant carrier concentrations, the conductivity σ=1/ρ xx due to the critical magnetic scattering calculated in the molecular field approximation reproduces the main features of experimental data, namely, the drop in the amplitude and shift of the resistivity peak near the Curie point with increasing magnetic field H and also a relatively slow change in the derivative /dH with increasing temperature in the region T⩽T C . The large hole concentration of about two per unit cell derived from Hall measurements indicates that carriers of opposite signs can coexist in these materials. Zh. éksp. Teor. Fiz. 116, 671–683 (August 1999)  相似文献   

13.
The formation of multiple nuclear spin echo signals has been studied in thin ferromagnetic polycrystalline films of 3d-metals and their alloys with induced anisotropy at temperatures between 2.2 and 300 K using two-pulse and three-pulse excitation. A method is proposed for the experimental determination of the contributions made by different mechanisms to the formation of spin-echo signals in magnets with strongly inhomogeneous Zeeman and quadrupole interactions. It is shown that in ferromagnets with a high rf field gain at the nucleus, the frequency modulation mechanism has a substantial influence in observations of nuclear spin-echo signals at nuclei with a high magnetic moment, even at liquid-helium temperatures. Fiz. Tverd. Tela (St. Petersburg) 40, 1056–1061 (June 1998)  相似文献   

14.
A theoretical framework for treating the effects of magnetic fieldH on the pairing theory of superconductivity is considered, where the field is taken in an arbitrary direction with respect to crystal axes. This is applicable to closed, as well as open normal state Fermi surface (FS), including simple layered metals. The orbital effects of the magnetic field are treated semiclassically while retaining the full anisotropic paramagnetic contribution. Explicit calculations are presented in the limits |H| → |H c2(T)|,T ∼ 0 andTT c(|H|), |H| ∼ 0. Effects of weak nonmagnetic impurity scattering, without vertex corrections, have also been taken into account in a phenomenological way. The final results for the case of open FS and layered materials are found to differ considerably from those of the closed FS. For example, an important parameter,h(T=0)=|Hc2(0)|/[-Tδ|H c2 TT]T{s0} for the case of a FS open ink z-direction with thek z-bandwidth, 4t 3, very small compared to the Fermi energy,E F, is close to 0.5906, compared to 0.7273 for the closed FS, in the clean limit. Analytical results are given for the magnetic field dependence ofT c and the temperature dependence of H c2 for a model of layered superconductors with widely open FS. For a set of band structure parameters for YBa2Cu3O7 used elsewhere, we find reasonable values for the upper critical fieldH c2(0), the slope (dH c2/dT)T c0, anisotropic coherence lengths ζi(T=0),i=x, y, z, and (dT c/d|H|)|H| → 0.  相似文献   

15.
We present here a review of the spin fluctuation theory and of its applications to transition and actinide systems, with a particular emphasis to the latter where some very anomalous properties find an explanation in terms of spin fluctuation effects. Firstly, we summarize the development of the spin fluctuation model which had been initially applied to transition metals and alloys such as palladium or Pd–Ni alloys. Then, we present the extension of the paramagnon model to nearly magnetic actinide systems by taking into account explicitly the temperature dependence of the Stoner susceptibility, because the 5f-band of actinides is much narrower than the d-band of transition metals. As a result the paramagnon contribution to the resistivity departs from the usual T 2 and T power laws at temperatures higher than the spin fluctuation one and saturates at high temperatures, with eventually the presence of a maximum at intermediate temperatures. We present also the calculation of the other properties of actinide systems, namely the thermal resistivity, the thermoelectric power, the magnetic susceptibility, the specific heat capacity and the NMR relaxation rate, which are generally enhanced by the presence of paramagnons. Finally, we have introduced the concept of ‘antiferromagnetic-like’ spin fluctuations which have a maximum of the q-dependent susceptibility χ(q) at a q value different from q =0, in contrast to the regular ferromagnetic spin fluctuations; both types of spin fluctuation give the same resistivity behaviour, while they yield a markedly different behaviour of the magnetic susceptibility, in agreement with experiment. The spin fluctuation theory is applied successfully to the different properties of neptunium and plutonium metals and of many nearly magnetic compounds such as UAl2.  相似文献   

16.
Karan Singh  K. Mukherjee 《哲学杂志》2020,100(13):1771-1787
ABSTRACT

In this work, we report the results of DC susceptibility, AC susceptibility and related technique, resistivity, transverse and longitudinal magnetoresistance and heat capacity on polycrystalline magnetic semimetal CeAlGe. This compound undergoes antiferromagnetic type ordering around 5.2 K (T1). Under the application of external magnetic fields, parallel alignment of magnetic moments is favoured above 0.5?T. At low field and temperature, frequency and AC field amplitude response of AC susceptibility indicate the presence of spin–lattice relaxation phenomena. The observation of spin–lattice interaction suggests the presence of the Rashba–Dresselhaus spin–orbit interaction which is associated with inversion and time-reversal symmetry breaking. Additionally, the presence of negative and asymmetric longitudinal magnetoresistance indicates anomalous velocity contribution to the magnetoresistance due to the Rashba–Dresselhaus spin–orbit interaction which is further studied by heat capacity.  相似文献   

17.
We have studied the temperature dependent resistivity ρ( T ) of La2-xSrxCuO4 epitaxial thin films in the doping range 0.045 ⩽ x ⩽ 0.25 in pulsed magnetic fields up to 50 T. The zero-field resistivity ρ( T ) of these samples in the pseudogap regime, can be scaled onto one single universal curve in a broad temperature range by using a linear transformation of both temperature and resistivity. The high field data ρ( T ) reveal a metal to insulator transition (MIT) at low temperatures, well into the overdoped regime. For samples having k F l < 1, with kF the Fermi wave vector and l the mean free path, this low temperature insulating behavior of the resistivity is described by the variable range hopping conductivity (VRH). For samples with k F l > 1, the divergence follows ρ( T ) ∼ ln (1/ T ) or a power law, depending upon the Sr-content. We further found that the residual conductivity at the minimum in ρ( T ), appearing due to the MIT, follows a linear behavior with respect to the Sr-content. It is argued that the unusual MIT in compounds with k F l > 1, is most probably associated with the pseudogap and the behavior of charge stripes at low temperatures. Received 4 January 2002 / Received in final form 7 May 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: liesbet.weckhuysen@fys.kuleuven.ac.be  相似文献   

18.
The NMR of 55Mn in the quasi-one-dimensional noncollinear antiferromagnet CsMnI3 at T=1.3 K is investigated in magnetic fields up to ∼40 kOe. Six NMR branches corresponding to six manganese spins per magnetic unit cell are observed. The NMR spectra correspond satisfactorily to the well-known magnetic structure of CsMnI3, taking into account the dynamic frequency shift due to the interaction with the low-lying AFMR modes. The average spins 〈S A〉=1.86 and 〈S B〉=1.74 of the magnetically nonequivalent Mn2+ ions are determined from the measured values of the hyperfine fields. The results obtained agree qualitatively with the calculations of spin reduction in quasi-one-dimensional antiferromagnets [Y. Watabe, T. Suzuki, and Y. Natsume, Phys. Rev. B 52, 3400 (1995)]. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 9, 661–665 (10 May 1998)  相似文献   

19.
The investigation of the specific heat of a RbDy(WO4)2 single crystal at temperatures 0.2–2.5 K and in magnetic fields up to 2 T are reported. The temperature dependence of the specific heat near T N=0.818 K is compared with the predictions for different models. The 2D Ising model describes satisfactorily C(T) below T N, while for T>T N none of the theoretical models agree with the behavior of C(T) of RbDy(WO4)2. The H-T phase diagram for Hc is complicated and possesses a triple point, where regions of existence of three magnetic phases converge. The magnetic ordering is analyzed from the standpoint of the Jahn-Teller nature of the structural phase transitions occurring in RbDy(WO4)2 at higher temperatures. It is shown that the form of the phase diagram depends on the direction of the vector H, for the general case of an arbitrary direction of H, two phase transitions can occur with increasing field. Fiz. Tverd. Tela (St. Petersburg) 41, 491–496 (March 1999)  相似文献   

20.
The frequency of orientational quantum oscillations of the magnetization near impurity-ion clusters with Ising properties in a saturated magnetic crystal is calculated. It is noted that in compounds of the type HoxY3−x Fe5O12, where magnetic phase transitions are observed, additional magnetization reversal and magnetic resonance features due to mesoscopic oscillations of the magnetization can be observed at low concentrations x<0.001 and cryogenic temperatures in fields comparable to the intersublattice exchange interaction field. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 6, 445–448 (25 March 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号