首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

2.
Let S be a compact hyperbolic Riemann surface of genus \({g \geq 2}\). We call a systole a shortest simple closed geodesic in S and denote by \({{\rm sys}(S)}\) its length. Let \({{\rm msys}(g)}\) be the maximal value that \({{\rm sys}(\cdot)}\) can attain among the compact Riemann surfaces of genus g. We call a (globally) maximal surface Smax a compact Riemann surface of genus g whose systole has length \({{\rm msys}(g)}\). In Section 2 we use cutting and pasting techniques to construct compact hyperbolic Riemann surfaces with large systoles from maximal surfaces. This enables us to prove several inequalities relating \({{\rm msys}(\cdot)}\) of different genera. In Section 3 we derive similar intersystolic inequalities for non-compact hyperbolic Riemann surfaces with cusps.  相似文献   

3.
We consider the nonlinear curl-curl problem \({\nabla\times\nabla\times U + V(x) U= \Gamma(x)|U|^{p-1}U}\) in \({\mathbb{R}^3}\) related to the Kerr nonlinear Maxwell equations for fully localized monochromatic fields. We search for solutions as minimizers (ground states) of the corresponding energy functional defined on subspaces (defocusing case) or natural constraints (focusing case) of \({H({\rm curl};\mathbb{R}^3)}\). Under a cylindrical symmetry assumption corresponding to a photonic fiber geometry on the functions V and \({\Gamma}\) the variational problem can be posed in a symmetric subspace of \({H({\rm curl};\mathbb{R}^3)}\). For a defocusing case \({{\rm sup} \Gamma < 0}\) with large negative values of \({\Gamma}\) at infinity we obtain ground states by the direct minimization method. For the focusing case \({{\rm inf} \Gamma > 0}\) the concentration compactness principle produces ground states under the assumption that zero lies outside the spectrum of the linear operator \({\nabla \times \nabla \times +V(x)}\). Examples of cylindrically symmetric functions V are provided for which this holds.  相似文献   

4.
Let \({L(n)}\) be the language of group theory with n additional new constant symbols \({c_1,\ldots,c_n}\). In \({L(n)}\) we consider the class \({{\mathbb{K}}(n)}\) of all finite groups G of exponent \({p > 2}\), where \({G'\subseteq\langle c_1^G,\ldots,c_n^G\rangle \subseteq Z(G)}\) and \({c_1^G,\ldots,c_n^G}\) are linearly independent. Using amalgamation we show the existence of Fraïssé limits \({D(n)}\) of \({{\mathbb{K}}(n)}\). \({D(1)}\) is Felgner’s extra special p-group. The elementary theories of the \({D(n)}\) are supersimple of SU-rank 1. They have the independence property.  相似文献   

5.
Let F be a field. We construct many subgroups of \({{\rm GL}_2(F(t))}\) that act regularly on \({F(t)^2{\setminus}\{0\}}\), and we show that the corresponding nearfields are not Dickson nearfields if chara \({F \ne 2}\).  相似文献   

6.
Besov spaces \({{\mathbf B}^s_{p,q} ({\mathbb R}^n)}\) with s > 0 can be normed in terms of the differences \({\Delta^m_h f}\) and related moduli of smoothness ω m (f, t) p , where \({0 < s < m \in {\mathbb N}}\). The paper deals with the question what happens if \({s {\uparrow} m}\) and how the outcome is related to the Sobolev spaces \({{\mathbf W}^m_p ({\mathbb R}^n)}\).  相似文献   

7.
Let \({g \in G}\) , where G is an arbitrary finite group. Then there exists \({\chi \in {\rm Irr} (G)}\) such that \({{\rm ker}(\chi) \cap \langle g \rangle = 1}\) and every prime divisor of the order o(g) divides the codegree of χ. This improves a recent result of Qian, in which G was assumed to be solvable.  相似文献   

8.
A string is a pair \({(L, \mathfrak{m})}\) where \({L \in[0, \infty]}\) and \({\mathfrak{m}}\) is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \({\mathfrak{m}}\) as its mass density. To each string a differential operator acting in the space \({L^2(\mathfrak{m})}\) is associated. Namely, the Kre?n–Feller differential operator \({-D_{\mathfrak{m}}D_x}\) ; its eigenvalue equation can be written, e.g., as
$$f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.$$
A positive Borel measure τ on \({\mathbb R}\) is called a (canonical) spectral measure of the string \({\textsc S[L, \mathfrak{m}]}\) , if there exists an appropriately normalized Fourier transform of \({L^2(\mathfrak{m})}\) onto L 2(τ). In order that a given positive Borel measure τ is a spectral measure of some string, it is necessary that: (1) \({\int_{\mathbb R} \frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) . (2) Either \({{\rm supp} \tau \subseteq [0, \infty)}\) , or τ is discrete and has exactly one point mass in (?∞, 0). It is a deep result, going back to Kre?n in the 1950’s, that each measure with \({\int_{\mathbb R}\frac{d\tau(\lambda)}{1+|\lambda|} < \infty}\) and \({{\rm supp} \tau \subseteq [0, \infty)}\) is a spectral measure of some string, and that this string is uniquely determined by τ. The question remained open, which conditions characterize whether a measure τ with \({{\rm supp} \tau \not\subseteq [0, \infty)}\) is a spectral measure of some string. In the present paper, we answer this question. Interestingly, the solution is much more involved than the first guess might suggest.
  相似文献   

9.
For bounded lattices L1 and L2, let \({f\colon L_1 \to L_2}\) be a lattice homomorphism. Then the map \({{\rm Princ}(f)\colon \rm {Princ}(\it L_1) \to {\rm Princ}(\it L_2)}\), defined by \({{\rm con}(x,y) \mapsto {\rm con}(f(x),f(y))}\), is a 0-preserving isotone map from the bounded ordered set Princ(L1) of principal congruences of L1 to that of L2. We prove that every 0-preserving isotone map between two bounded ordered sets can be represented in this way. Our result generalizes a 2016 result of G. Grätzer from \({\{0,1}\}\)-preserving isotone maps to 0-preserving isotone maps.  相似文献   

10.
We prove that there exists an absolute constant \({\alpha > 1}\) with the following property: if K is a convex body in \({{\mathbb R}^n}\) whose center of mass is at the origin, then a random subset \({X\subset K}\) of cardinality \({{\rm card}(X)=\lceil\alphan\rceil }\) satisfies with probability greater than \({1-e^{-c_1n}}\)
$$K\subseteq c_2n\, {\rm conv}(X),$$
where \({c_1, c_2 > 0}\) are absolute constants. As an application we show that the vertex index of any convex body K in \({{\mathbb R}^n}\) is bounded by \({c_3n^2}\), where \({c_3 > 0}\) is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
  相似文献   

11.
Let F be a non-Archimedean local field of characteristic 0, let G be the group of F-rational points of a connected reductive group defined over F and let \({G\prime}\) be the group of F-rational points of its quasi-split inner form. Given standard modules \({I(\tau, \nu )}\) and \({I(\tau\prime, \nu\prime)}\) for G and \({G\prime}\) respectively with \({\tau\prime}\) a generic tempered representation, such that the Harish-Chandra \({\mu}\)-function of a representation in the supercuspidal support of \({\tau}\) agrees with the one of a generic essentially square-integral representation in some Jacquet module of \({\tau\prime}\) (after a suitable identification of the underlying spaces under which \({\nu = \nu\prime}\)), we show that \({I(\tau, \nu)}\) is irreducible whenever \({I(\tau\prime, \nu\prime)}\) is. The conditions are satisfied if the Langlands quotients \({J(\tau, \nu})\) and \({J(\tau\prime, \nu\prime)}\) of respectively \({I(\tau, \nu)}\) and \({I(\tau\prime, \nu\prime)}\) lie in the same Vogan L-packet (whenever this Vogan L-packet is defined), proving that, for any Vogan L-packet, all the standard modules with Langlands quotient in a given Vogan L-packet are irreducible, if and only if this Vogan L-packet contains a generic representation. This result for generic Vogan L-packets was proven for quasi-split orthogonal and symplectic groups by Moeglin-Waldspurger and used in their proof of the general case of the local Gan-Gross-Prasad conjectures for these groups.  相似文献   

12.
A linear map \({\phi}\) of operator algebras is said to preserve numerical radius (or to be a numerical radius isometry) if \({w(\phi(A))=w(A)}\) for all A in its domain algebra, where w(A) stands for the numerical radius of A. In this paper, we prove that a surjective linear map \({\phi}\) of the nest algebra \({{\rm Alg}\mathcal N}\) onto itself preserves numerical radius if and only if there exist a unitary U and a complex number ξ of modulus one such that \({\phi(A)= \xi UAU^*}\) for all \({A\in{\rm Alg}\mathcal N}\), or there exist a unitary U, a conjugation J and a complex number ξ of modulus one such that \({\phi(A)=\xi UJA^*JU^*}\) for all \({A\in{\rm Alg}\mathcal N}\).  相似文献   

13.
We describe a class of discontinuous additive functions \({a:X\to X}\) on a real topological vector space X such that \({a^n={\rm id}_X}\) and \({a({\mathcal{H}}){\setminus} {\mathcal{H}}\neq\emptyset}\) for every infinite set \({{\mathcal{H}}\subset X}\) of vectors linearly independent over \({\mathbb{Q}}\). We prove the density of the family of all such functions in the linear topological space \({{\mathcal{A}}_X}\) of all additive functions \({a:X\to X}\) with the topology induced on \({{\mathcal{A}}_X}\) by the Tychonoff topology of the space XX. Moreover, we consider additive functions \({a\in{\mathcal{A}}_X}\) satisfying \({a^n={\rm id}_X}\) and \({a({\mathcal{H}})= {\mathcal{H}}}\) for some Hamel basis \({{\mathcal{H}}}\) of X. We show that the class of all such functions is also dense in \({{\mathcal{A}}_X}\). The method is based on decomposition theorems for linear endomorphisms.  相似文献   

14.
We study the local Hecke algebra \({\mathcal{H}_{G}(K)}\) for \({G = {\rm GL}_{n}}\) and K a non-archimedean local field of characteristic zero. We show that for \({G = {\rm GL}_{2}}\) and any two such fields K and L, there is a Morita equivalence \({\mathcal{H}_{G}(K) \sim_{M} \mathcal{H}_{G}(L)}\), by using the Bernstein decomposition of the Hecke algebra and determining the intertwining algebras that yield the Bernstein blocks up to Morita equivalence. By contrast, we prove that for \({G = {\rm GL}_{n}}\), there is an algebra isomorphism \({\mathcal{H}_{G}(K) \cong \mathcal{H}_{G}(L)}\) which is an isometry for the induced \({L^1}\)-norm if and only if there is a field isomorphism \({K \cong L}\).  相似文献   

15.
Let \({{\mathbb{R}}}\) and Y be the set of real numbers and a Banach space respectively, and \({f, g :{\mathbb{R}} \to Y}\). We prove the Ulam-Hyers stability theorems for the Pexider-quadratic functional equation \({f(x + y) + f(x - y) = 2f(x) + 2g(y)}\) and the Drygas functional equation \({f(x + y) + f(x - y) = 2f(x) + f(y) + f(-y)}\) in the restricted domains of form \({\Gamma_d := \Gamma \cap \{(x, y) \in {\mathbb{R}}^2 : |x| + |y| \ge d\}}\), where \({\Gamma}\) is a rotation of \({B \times B \subset {\mathbb{R}}^2}\) and \({B^c}\) is of the first category. As a consequence we obtain asymptotic behaviors of the equations in a set \({\Gamma_d \subset {\mathbb{R}}^2}\) of Lebesgue measure zero.  相似文献   

16.
Let \({C={\rm inf} (k/n)\sum_{i=1}^n x_i(x_{i+1}+\cdots+x_{i+k})^{-1}}\), where the infimum is taken over all pairs of integers \({n\geq k\geq 1}\) and all positive \({x_1,\ldots,x_n}\), \({x_{n+i}=x_i}\). We prove that \({\ln 2 \leq C < 0.9305}\). In the definition of the constant C, the operation \({{\rm inf}_{k}\, {\rm inf}_{n}\, {\rm inf}_{x}}\) can be replaced by \({{\rm lim}_{k \to \infty}\, {\rm lim}_{n \to \infty} {\rm inf}_{x}}\).  相似文献   

17.
The purpose of this work is to classify, for given integers \({m,\, n\geq 1}\), the bordism class of a closed smooth \({m}\)-manifold \({X^m}\) with a free smooth involution \({\tau}\) with respect to the validity of the Borsuk–Ulam property that for every continuous map \({\phi : X^m \to \mathbb{R}^n}\) there exists a point \({x\in X^m}\) such that \({\phi (x)=\phi (\tau (x))}\). We will classify a given free \({\mathbb{Z}_2}\)-bordism class \({\alpha}\) according to the three possible cases that (a) all representatives \({(X^m, \tau)}\) of \({\alpha}\) satisfy the Borsuk–Ulam property; (b) there are representatives \({({X_{1}^{m}}, \tau_1)}\) and \({({X_{2}^{m}}, \tau_2)}\) of \({\alpha}\) such that \({({X_{1}^{m}}, \tau_1)}\) satisfies the Borsuk–Ulam property but \({({X_{2}^{m}}, \tau_2)}\) does not; (c) no representative \({(X^m, \tau)}\) of \({\alpha}\) satisfies the Borsuk–Ulam property.  相似文献   

18.
For a proper cone \({{\mathcal K}\subset\mathbb{R}^n}\) and its dual cone \({{\mathcal K}^*}\) the complementary slackness condition \({\langle{\rm {\bf x}},{\rm {\bf s}}\rangle=0}\) defines an n-dimensional manifold \({C({\mathcal K})}\) in the space \({{\mathbb R}^{2n}}\) . When \({{\mathcal K}}\) is a symmetric cone, points in \({C({\mathcal K})}\) must satisfy at least n linearly independent bilinear identities. This fact proves to be useful when optimizing over such cones, therefore it is natural to look for similar bilinear relations for non-symmetric cones. In this paper we define the bilinearity rank of a cone, which is the number of linearly independent bilinear identities valid for points in \({C({\mathcal K})}\) . We examine several well-known cones, in particular the cone of positive polynomials \({{\mathcal P}_{2n+1}}\) and its dual, and show that there are exactly four linearly independent bilinear identities which hold for all \({({\rm {\bf x}},{\rm {\bf s}})\in C({\mathcal P}_{2n+1})}\), regardless of the dimension of the cones. For nonnegative polynomials over an interval or half-line there are only two linearly independent bilinear identities. These results are extended to trigonometric and exponential polynomials. We prove similar results for Müntz polynomials.  相似文献   

19.
The main purpose of this paper is to prove the following result. Let R be a 2-torsion free semiprime ring with symmetric Martindale ring of quotients Q s and let \({\theta}\) and \({\phi}\) be automorphisms of R. Suppose \({T:R\rightarrow R}\) is an additive mapping satisfying the relation \({T(xyx)=T(x)\theta (y)\theta (x)-\phi (x)T(y)\theta (x)+\phi (x)\phi (y)T(x)}\), for all pairs \({x,y\in R}\). In this case T is of the form \({2T(x)=q\theta (x)+\phi (x)q}\), for all \({x\in R}\) and some fixed element \({q\in Q_{s}}\).  相似文献   

20.
The aim of this work is to estimate sums involving P(n), the largest prime factor of an integer \({n \geqq 2}\) under digital constraints \({{f(P(n)) \equiv a}{\rm mod} b}\), for every \({a \in \mathbb{Z}}\) and an integer \({b \geqq 2}\) where f is a strongly q-additive function with integer values (i.e. \({f(aq^j + b) = f(a) + f(b)}\), with \({(a, b, j) \in \mathbb{N}^3}\), \({{0 \leqq b} < q^j}\)). We also estimate the cardinality of the set \({\{{n \leqq x, f(P(n) + c)} \equiv {a {\rm mod} b}, P(n) \equiv l {\rm mod} k\}}\), where \({c \in \mathbb{Z}}\), \({k \geqq 2}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号