共查询到20条相似文献,搜索用时 18 毫秒
1.
《化学进展》2016,(Z2)
石墨烯作为理想的电极材料,由于其优异的物理和化学性质,在电催化和电分析领域已得到了广泛的关注。由于石墨烯的不可逆团聚现象使其在电化学各领域的应用受到了极大的限制,而氧化石墨烯制备简单、易得,且具有良好的亲水特性,可弥补上述不足,但其结构中富含的各种含氧基团又会导致氧化石墨烯修饰界面的电子传输能力降低,不利于电催化反应和高灵敏传感器的构筑。采用适当的还原方法可减少和控制氧化石墨烯表面的含氧基团的数量,以恢复石墨烯较为完善的平面共轭结构,提高其导电性和调节带隙,达到调控材料电催化性能的目的。基于电化学还原氧化石墨烯(ERGO)得到的本征及各类无机、有机等ERGO类复合材料的电化学传感器具有明显的优势,已被广泛应用于各种电催化及电化学传感领域。本文就基于ERGO类材料的电化学传感器的近期进展作了简要评述,论述了此类电化学传感平台的特点、制备原理和方法、分类以及在各类环境污染物、食品和药物、DNA及生物等领域的电化学传感应用,并就此类电化学传感器的发展方向和应用前景进行了展望。 相似文献
2.
石墨烯(Gr)是一类由单层碳原子组成的二维碳质材料,利用它独特的结构和良好的物理、化学性能,可构筑出在电催化、电化学传感器和生物传感器等领域有着巨大应用潜力的新型Gr功能复合材料。基于Gr功能复合材料的DNA电化学传感器与常规DNA传感器相比,具有明显的特色和优势,已被应用于特异DNA靶序列的识别和传感领域。本文就基于Gr功能复合材料的DNA电化学传感器的近期进展作简要评述,包括Gr与Gr基金属、金属氧化物、高分子、生物分子复合材料的电化学性能及其在DNA电化学传感中的应用,并对该类DNA电化学传感器的发展方向和应用前景进行了展望。 相似文献
3.
基于银纳米粒子/氧化石墨烯复合薄膜制备TNP电化学传感器 总被引:1,自引:0,他引:1
利用改进的Hummers法制备了氧化石墨烯(GO),以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2,4,6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明,AgNPs/GO对TNP有较强的电催化活性,在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆,电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8mol.cm-2,在所研究电位下的速率常数为9.745×10-5cm.s-1。在pH 6.8的磷酸缓冲液中,当富集电位为-0.70 V,富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7mol.L-1范围内成良好线性关系,相关系数为0.995 8,检出限可达1.0×10-9mol.L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测,加标回收率在97.6%~103.9%之间。 相似文献
4.
利用改进的Hummers法制备了氧化石墨烯(GO), 以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2, 4, 6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明, AgNPs/GO对TNP有较强的电催化活性, 在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆, 电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8 mol·cm-2, 在所研究电位下的速率常数为9.745×10-5 cm·s-1。在pH 6.8的磷酸缓冲液中, 当富集电位为-0.70 V, 富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7 mol·L-1范围内成良好线性关系, 相关系数为0.995 8, 检出限可达1.0×10-9 mol·L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测, 加标回收率在 97.6%~103.9%之间。 相似文献
5.
基于氧化石墨烯/碳纳米管复合薄膜修饰电极制备L-色氨酸电化学传感器 总被引:1,自引:0,他引:1
将Hummers法制备的单层氧化石墨烯(GO)与多壁碳米管(MWCNT)超声混合,得到性能稳定的GO/MWCNT复合纳米材料。以此纳米材料修饰玻碳电极,构建了一种新型L-色氨酸(L-Trp)电化学传感器。采用透射电镜(TEM)、循环伏安(CV)和交流阻抗(EIS)等方法对修饰电极进行了表征;并研究了L-Trp在修饰电极上的电化学行为和动力学性质。结果表明,L-Trp在GO/MWCNT修饰电极有一个灵敏的氧化峰(Epa=0.956 V);该氧化反应是一个2电子和2质子参与的不可逆过程,电极过程受到吸附步骤控制,其表观标准速率常数为9.613×10-4cm/s;利用该氧化峰可进行痕量L-Trp的检测。在pH 6.0磷酸盐缓冲液中,当富集电位为0.600 V,富集时间为25 s,扫速为100 mV/s时,L-Trp氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol/L范围内呈良好线关系,相关系数为0.995,检出限可达3.50×10-7mol/L;所制备的电化学传感器稳定性较好,用于人体血清中L-Trp的现场快速检测,加标回收率为97.8%~104.2%。 相似文献
7.
石墨烯是一种具有单原子厚度的二维碳纳米材料,具有大的比表面积、高的导电性和室温电子迁移率,以及优异的机械力学性能.石墨烯还具有电化学窗口宽,电化学稳定性好,电荷传递电阻小,电催化活性高和电子转移速率快等电化学特性.化学修饰石墨烯,特别是氧化石墨烯(GO)和还原氧化石墨烯(rGO),可以被宏量、廉价地制备出来.它们具有可加工性能,可以被组装、加工或复合成具有可控组成和微结构的宏观电极材料.因此,石墨烯及其化学修饰衍生物是用于电化学生物传感的独特而诱人的电极材料.例如,GO是一种化学修饰石墨烯,也是石墨烯的重要前驱体;其边缘具有大量的羧基可用于共价固定酶,从而能实现酶电极的生物检测.在GO上的不可逆蛋白吸附也可以促进蛋白质的直接电子转移以提高其电化学检测性能.但是,GO大量的含氧官能团破坏了石墨烯本征的共轭结构,降低了其电学性能并限制了其实际应用.GO可以通过化学、电化学、热还原等技术转化成rGO,从而能部分修复其共轭结构,提高其导电性与传感性能.另一方面,石墨烯是一种零带隙材料;原子掺杂可以调控其能带结构,提高其电催化性能.石墨烯材料也常常需要通过与其它功能材料的复合进一步改善其可分散与可加工性能,提高其电催化活性和电化学选择性.本文综述了本征石墨烯(包括GO,rGO和掺杂石墨烯)以及石墨烯与生物分子、高分子、离子液体、金属或金属氧化物纳米粒子等复合材料修饰电极在检测各种生物分子方面的研究进展,并对该研究领域进行了展望. 相似文献
8.
几千年来,致病菌对人类健康构成了巨大威胁。实现致病菌的实时监测可有效阻止致病菌的传播,从而降低对人类健康的威胁。迄今为止,已有电化学、光学、压电和量热等多种技术用于细菌的检测。其中,基于电化学阻抗技术的传感器由于其成本低、读取时间短、重现性好、设备便携等优点,在实时细菌检测中展现出了巨大的应用潜力。本文主要综述了近三年来电化学阻抗技术在细菌传感中的典型应用。众所周知,电极材料在基于电化学阻抗的传感器的构建中发挥着极其重要的作用,因为细菌生物识别元件的固定化,以及所制备的传感器的灵敏度、经济性和便携性都主要取决于电极材料。因此,为了向新入行的研究人员提供基于不同电极材料制备电化学阻抗传感器清晰的制备过程,我们尝试根据不同的电极平台对基于电化学阻抗技术的传感器进行分类。此外,还讨论了目前的难点、未来的应用方向和前景。我们希望通过本文的综述,能够为刚进入该领域的研究人员开展基于电化学阻抗技术,制备快速、灵敏、准确地检测多种致病菌的传感器研究提供指导。 相似文献
9.
《分析科学学报》2015,(4)
分别采用滴涂法制备石墨烯(GR)-壳聚糖(CS)修饰玻碳电极(GR-CS/GCE),以及电沉积-还原氧化石墨烯(GO)修饰玻碳电极(rGO/GCE),并对修饰电极进行了电化学表征。结果表明,rGO/GCE比GR-CS/GCE及GCE有较小的电子转移阻抗和较大的表观活性面积。rGO/GCE电极的制备条件为GO悬浮液浓度1.0g/L、扫描速度20mV/s和电沉积30圈。优化了油脂阻抗测量条件,研究了油脂样品在rGO/GCE上的交流阻抗行为。根据rGO/GCE可以快速、准确地测量实际油脂样品(杏仁油)氧化过程中阻抗值及其变化,据此建立了一种简便、灵敏和准确测量油脂氧化诱导时间的电化学分析方法。 相似文献
10.
11.
微电极由于灵敏度高、响应快、样品用量少、操作简便等特点,近年来在化学分析、生物医学、食品安全、环境检测等领域引起人们的广泛关注。 石墨烯具有超高的比表面积、优异的电子迁移率及良好的生物相容性等优点,近年来在电化学传感领域展示出巨大的发展前景。 本文围绕石墨烯基微电极的制备及其在电化学传感中的应用展开,总结了近年来国内外同行基于石墨烯修饰微电极和石墨烯微电极在重金属离子、多巴胺、葡萄糖、H2O2等分子检测方面取得的研究成果。 同时探讨了石墨烯基微电极在电化学传感方面面临的挑战和发展前景。 相似文献
12.
氧化石墨烯荧光传感器 总被引:1,自引:0,他引:1
氧化石墨烯因其独特的光学、表面、机械、电学及热学性质在诸多领域都具有良好的应用前景。利用氧化石墨烯能够有效猝灭荧光体(染料分子、量子点及上转换纳米材料)荧光的特性,结合相关生物分析技术,相继开发了各种荧光传感器。本文综述近年来氧化石墨烯荧光传感器的基本原理及研究进展,主要讨论氧化石墨烯荧光传感器在重金属离子、DNA、蛋白质及生物小分子的分析应用,并对该领域的应用前景进行了展望。 相似文献
13.
依据三螺旋DNA的形成,以氧化石墨烯为基础建立了一种识别特定序列双螺旋DNA的方法。单链探针DNA能够通过静电引力作用吸附在氧化石墨烯表面,标记在单链DNA末端的荧光探针分子TAMRA由于荧光能量共振转移作用使得其荧光发生淬灭。加入目标双螺旋DNA后,单链探针DNA与目标DNA分子形成三螺旋DNA,探针DNA从氧化石墨烯表面脱附,标记在探针DNA上的荧光分子的荧光恢复。在最佳实验条件下,荧光恢复的强度与探针DNA的浓度在20.0~300.0 nmol/L具有良好的线性关系,检出限为16.9 nmol/L。该方法在DNA药物筛选及基因疾病的诊断方面具有一定的应用前景。 相似文献
14.
15.
修饰材料和酶在电极表面上的固定是目前制约葡萄糖生物传感器广泛应用的主要因素. 交替电沉积石墨烯和纳米金在玻碳电极表面以构建石墨烯/金复合材料. 电极放入2,5-二(2-噻吩)-1-对苯甲酸吡咯溶液(DPB)进行电聚合形成含有大量游离羧基的导电高分子膜. 以1-乙基-3-(3-二甲基氨丙基)-碳化二亚胺和N-羟基琥珀酰亚胺的混合溶液为活化剂将葡萄糖氧化酶共价键合于电极表面制备生物传感器. 采用拉曼光谱、X-射线衍射和扫描电镜对石墨烯/金复合材料的形貌和结构分析揭示交替电沉积得到了分散性良好的石墨烯/金复合材料. 此外, 修饰电极的电化学性质也被详细研究. 它的电活性面积、载酶量和表观米氏常数分别为0.1403 cm2、7.73×10-11 mol·cm-2和5.23×10-5 mol·L-1. 当葡萄糖浓度在5×10-6~5×10-4 mol·L-1之间, 传感器的差分脉冲伏安峰电流变化符合线性关系. 方法的检出限为1.7×10-6 mol·L-1. 传感器在4 ℃下放置四周后其电化学响应仍能保持95%以上. 由于石墨烯/金复合材料的电催化作用和导电高分子对酶的共价固定, 方法在灵敏度、选择性、稳定性和重现性方面优于文献报道的萄葡糖生物传感器, 它成功用于血清中微量葡萄糖的测定. 相似文献
16.
17.
基于石墨烯分子印迹电化学传感器测定芦丁 总被引:2,自引:0,他引:2
将石墨烯(GR)滴涂至裸Au电极表面,并以邻氨基酚为功能单体,芦丁为模板分子,制备了芦丁分子印迹膜电化学传感器,利用循环伏安法(CV)和差分脉冲伏安法(DPV)对制得的传感器进行了电化学性能研究,并且对制备条件和测定条件进行了优化。结果表明,与裸Au电极相比,该GR修饰的Au电极在[Fe(CN)_6]~(3-/4-)溶液中峰电流明显增大,显著提高了芦丁分子印迹传感器的灵敏度。在最优实验条件下,基于GR分子印迹电化学传感器在4.40×10~(-6)~2.80×10~(-4) mol/L范围内呈良好的线性关系,检测限为1.46×10~(-6) mol/L。用该传感器测定了黑茶中芦丁的含量,获得较好结果。 相似文献
18.
本工作结合分子印迹技术和电化学检测方法对多巴胺(DA)进行了快速测定。以DA为模板分子,邻苯二胺(o-phenylenediamine,oPD)为功能单体,在氧化石墨烯(GO)修饰电极表面通过一步电聚合法制备分子印迹电化学传感器。采用透射电镜(TEM)和扫描电镜(SEM)对GO的形貌进行了表征,通过循环伏安法(CV)和差分脉冲伏安法(DPV)对传感器的电化学性能进行了分析。当DA的浓度在0.4~2000μmol·L-1范围内时,DA在印迹电极上的DPV峰电流值与其浓度呈线性关系,检出限为8.0×10-8 mol·L-1;采用该方法对实际样品中的DA进行测定,回收率在92~108%之间。 相似文献
19.
利用电化学阻抗谱(EIS)研究了甲醇在不同电化学极化处理后的PtRu/C催化剂上的电氧化动力学参数.通过交流阻抗理论的分析,从理论上研究了不同电势区间(低、中、高)内反应中间产物的表面覆盖率随电极电势的变化规律以及对反应法拉第电流的影响,较好地解释了甲醇电氧化实验中的动力学规律在低电势区,甲醇分子脱除第一个氢原子的基元反应,即第一个电子的传递反应为速率控制步骤,而在高电势区,反应中间产物COads的氧化脱除则为速率控制步骤. 相似文献
20.
电化学阻抗谱(EIS)是一种高效的原位/非原位电化学表征技术,已在电化学能源领域得到广泛应用,如用于锂离子电池、超级电容器、燃料电池等材料及器件性能的诊断和优化. 弛豫时间分布(DRT)是一种不依赖于研究对象先验知识的EIS解析技术,可用于分离和解析EIS中高度重叠的物理化学过程. 为了促进DRT解析技术的应用和推广,本文详细阐述了如下问题: 1) DRT解析原理、实现算法及重要扩展; 2) 典型电路基元的DRT解析分析; 3) DRT的具体实现及在电化学能源中的典型应用举例; 4)DRT解析技术研究进展、存在问题及发展趋势. 相似文献