首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将Nafion 膜固定在金电极(Au)表面, 通过静电吸附和共价键合作用将硫堇(Thi)和纳米金颗粒(nano-Au)层层自组装到Nafion膜修饰的金电极表面. 再通过形成的纳米金单层吸附癌胚抗体(anti-CEA), 最后用辣根过氧化物酶(HRP)代替牛血清白蛋白(BSA)封闭电极上的非特异性吸附位点, 并同时起到放大响应电流信号的作用, 从而制得高灵敏、高稳定电流型酶-癌胚抗原(CEA)免疫传感器. 通过循环伏安和交流阻抗考察了电极表面的电化学特性, 并对该免疫传感器的性能进行了详细的研究. 该传感器对CEA检测的线性范围为2.5~80.0 ng/mL, 检测限为0.90 ng/mL.  相似文献   

2.
制备了易于磁性分离、硫堇(Thi)包覆的四氧化三铁(Fe3O4)纳米复合物。通过静电吸附作用,将萘酚(Nafion)、Thi包覆的Fe3O4复合纳米粒子层层修饰到玻碳电极表面,再利用Thi分子中的氨基吸附纳米金,最后固载甲胎蛋白抗体,从而制得灵敏度高、稳定性好的无试剂电流型甲胎蛋白免疫传感器。实验通过透射电子显微镜(TEM)对该复合纳米粒子进行表征,并用循环伏安法考察了电极的电化学特性。结果表明,Fe3O4/Thi复合纳米粒子修饰的电极在实验过程中呈现出良好的氧化还原活性,其检测范围为0.05~20μg/L,检出限为0.03μg/L。  相似文献   

3.
闵丽根  袁若  柴雅琴  陈时洪  许阳  付萍 《化学学报》2008,66(14):1676-1680
采用纳米金(nano-Au)、多壁碳纳米管-纳米铂-壳聚糖的纳米复合物(MWNT-Pt-CS)及电子媒介体硫堇(Th)固载抗体制得高灵敏癌胚抗原免疫传感器.首先, 于壳聚糖溶液中用NaBH4还原H2PtCl6, 并将多壁碳纳米管分散于其中制得碳纳米管-纳米铂-壳聚糖纳米复合物, 并将其滴涂在玻碳电极上成膜; 然后, 吸附电子媒介体硫堇制得硫堇/碳纳米管-纳米铂-壳聚糖(Th/MWNT-Pt-CS)修饰电极.利用壳聚糖和硫堇分子中大量的氨基固定纳米金并吸附癌胚抗体(anti-CEA); 最后, 用辣根过氧化物酶(HRP)封闭活性位点从而制得高灵敏电流型免疫传感器.在优化的实验条件下, 该传感器响应的峰电流值与癌胚抗原(carcinoembryonic antigen)浓度在0.5~10和10~120 ng/mL的范围内保持良好的线性关系, 检测限为0.2 ng/mL.  相似文献   

4.
将硫堇聚合到玻碳电极(GCE)表面形成带正电的多孔聚硫堇(PTH)复合膜, 通过静电吸附固定DNA/纳米银复合物, 利用复合物中纳米银大的比表面积和强的吸附能力将癌胚抗体(anti-CEA)固定到电极表面, 从而制得高灵敏的电流型癌胚抗原(CEA)免疫传感器. 通过循环伏安法考察了电极表面的电化学行为, 并对免疫传感器的性能进行了详细研究. 在最优的实验条件下, 用示差脉冲伏安法(DPV)对癌胚抗原进行检测, 其线性范围为1.0~10.0 ng•mL-1和10.0~80.0 ng•mL-1, 线性相关系数分别为0.9983和0.9970, 检测限为0.24 ng•mL-1, 并将该免疫传感器用于血清样品中CEA的检测.  相似文献   

5.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记电化学免疫传感器的制备及应用,石墨烯与甲苯胺蓝复合物饰于玻碳电极表面,通过循环伏安法对修饰的电极进行表征.基于以[Fe(CN)6]3-/4-为氧化还原探针,癌胚抗原抗体反应引起[ Fe(CN)6] 3-/4-探针的电流响应的变化,来实现癌胚抗原的检测,癌胚抗原的浓度...  相似文献   

6.
合成了Fe3O4/Au磁性复合纳米粒子, 在粒子表面通过自组装硫脲分子使表面氨基化, 再用戊二醛共价交联固定癌胚抗原抗体(anti-CEA). 在外加磁场的作用下, 将anti-CEA复合磁性粒子吸附在固体石蜡碳糊电极表面, 制成了新型电流型免疫传感器. 免疫电极在含有癌胚抗原CEA和辣根过氧化物酶标记的癌胚抗原(HRP-CEA)的混合溶液中温育, CEA和HRP-CEA与固定在电极表面的anti-CEA发生竞争反应, 导致HRP对H2O2的催化降解作用的改变, 从而可间接测定CEA. 由于标记的HRP可催化降解H2O2, 导致媒介体间苯二酚浓度改变, 使测定的灵敏度大大提高. 响应电流与CEA质量浓度的对数在2~160 ng/mL的范围内呈线性关系, 检出限为0.57 ng/mL(3σ法). 该免疫传感器具有制作简单、价廉及表面易于更新等特点.  相似文献   

7.
刘艳  徐岚 《分析试验室》2011,30(11):81-84
制备了基于多壁碳纳米管-硫堇/Nafion纳米复合物的人IgG免疫传感器.阻抗谱、循环伏安研究表明,该免疫传感器对人IgG的检测具有优异的性能,其对人免疫球蛋白G(IgG)浓度的定量测定线性范围为1.0 ~ 200μg/L,检出限为0.25 μg/L,线性相关系数R=0.9950.该免疫传感器可用于对人血清中IgG的检...  相似文献   

8.
利用Nafion(全氟聚苯乙烯磺酸溶液)-氧化石墨烯复合物、硫堇和纳米金构建了H2O2酶传感器。首先将氧化石墨烯分散在体积分数0.2%Nafion溶液中制得Nafion-氧化石墨烯的复合物,并将其固定在玻碳电极表面,通过静电吸附将带正电荷的硫堇吸附到Nafion-氧化石墨烯复合膜修饰的玻碳电极表面,再利用静电吸附将纳米金修饰于电极上,通过纳米金来固定辣根过氧化物酶从而制得H2O2传感器。用循环伏安法和计时电流法考察该修饰电极的电化学特性。H2O2浓度为5.5×10-6~1.0×10-3mol/L时,酶电极的响应电流值与H2O2的浓度呈良好的线性关系,检出限为1.80×10-6mol/L。  相似文献   

9.
基于电沉积和层层自组装技术,提出了一种新的生物分子固定化方法,研制成一种高灵敏电位型乙肝表面抗原免疫传感器。利用L-半胱胺酸(LCys)的双官能团结合双层纳米金,从而通过比表面积大,生物相容性好的纳米金胶吸附大量抗体,同时用聚乙烯醇缩丁醛(PVB)薄膜的笼效应把乙肝表面抗体(HBsAb)和纳米金固定在玻碳电极上,从而制得了高灵敏度、高稳定性的电位型免疫传感器。采用循环伏安法(CV)对电极的层层自组装过程进行了考察,并对该免疫传感器的性能进行了详细的研究。该免疫传感器线性范围是8.5~256.0ng/mL,线性相关系数为0.9978,灵敏度为89.0,检出限为3.1ng/mL。已用于病人的血清样品分析。  相似文献   

10.
电致发光传感器具有简单,快速,高灵敏以及背景信号小等优点,已经广泛应用于DNA杂化,蛋白质以及末端酶活性的检测.近年来,夹心式电致发光免疫传感器也发展迅猛,量子点,联吡啶钌的复合物,以及ABEI等都被用作为标记物.纳米材料由于其特殊的电学,光学,磁性以及催化性能也多次用于抗体的标记.  相似文献   

11.
癌抗原-153(CA-153)是乳腺癌最重要的特异性标志物。利用CA-153与其抗体之间的特异性识别性构建"三明治"夹心结构的免疫传感器,在玻碳电极上修饰金纳米/氧化石墨烯复合材料,通过纳米金和CA-153抗体之间的吸附作用,将抗体固定于电极表面,以牛血清白蛋白封闭非特异性吸附位点。金银(AuAg)纳米立方体标记CA-153二抗,标记的AuAg纳米立方体催化过氧化氢氧化电子媒介体硫堇,采用差分脉冲伏安法检测CA-153的电化学信号。在最优条件下,此传感器的响应电流与CA-153浓度的对数在2.0×10~(-5)~100 U/mL范围内呈良好的线性关系,检出限(S/N=3)为7.0×10~(-6)U/mL。对实际血清样品进行加标回收实验,回收率为92.2%~110.2%,相对标准偏差不大于8.7%。  相似文献   

12.
在玻碳电极表面滴加纳米金,通过纳米金(AuNPs)的生物相容性以固定人肠道病毒71型(EV71)抗体从而制备EV71电化学免疫传感器,该电化学免疫传感器可灵敏检测EV71。在pH 7.0的含有0.1mol·L-1氯化钾和5mmol·L-1 K3Fe(CN)6/K4Fe(CN)6的磷酸盐缓冲溶液中,通过循环伏安法考察了该免疫传感器的分析性能。当EV71的质量浓度在0.1~80μg·L-1范围内时,氧化还原探针[Fe(CN6)]3-/4-的氧化峰电流随EV71质量浓度的增大呈线性降低,检出限(3S/N)为0.025μg·L-1。对20μg·L-1的EV71抗原标准溶液测定5次,测定值的相对标准偏差为3.0%。以空白样品为基体进行加标回收试验,所得回收率在98.3%~100%之间。  相似文献   

13.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记阻抗型免疫传感器的制备及应用,基于石墨烯、纳米金在玻碳电极表面组装制备传感器,通过循环伏安法、交流阻抗法对制备的传感器进行表征。在优化的实验条件下,该免疫传感器的阻抗值随着检测溶液中癌胚抗原(CEA)浓度的增大而增大,并在0.1~85 ng/mL CEA范围内呈线性关系,回归方程为△Ret=1605.55+39.26ρ;检测限为0.04 ng/mL(R=0.9992)。该免疫传感器可用于临床上对CEA的检测。  相似文献   

14.
构建了灵敏的铁氰化钾-壳聚糖-戊二醛信号体系,并以此为信号指示剂,建立了稳定、准确的免标记电化学免疫传感器用于血清中癌胚抗原(CEA)的检测。信号体系和Nafion分别修饰于玻碳电极表面,并固定CEA抗体,分别用原子力显微镜(AFM)和循环伏安法(CV)对电极修饰过程的形貌和电化学行为进行表征。结果表明,循环伏安的电流响应值与固定在电极表面的CEA浓度直接相关,且CEA浓度的对数值在0.005~40.0 ng/mL范围内与电流的降低值呈良好的线性关系,检出限为1.23 pg/mL。方法具有良好的特异性,能准确检测血清样本中CEA的浓度。  相似文献   

15.
近年来,以适体作为识别原件的生物传感器越来越受到人们的关注.金、铂纳米粒子具有大比表面积、良好的导电性性和生物相容性性质,而铂纳米更具有对过氧化氢的催化能力,在生物传感器领域具有广泛的应用前景~([1]).由于生物素和亲核素的反应,具有亲和力高,特异性强等特点,在生物分子的固定方面具有独特的优点~([2]).  相似文献   

16.
研究了在PBS缓冲介质中,一种检测癌胚抗原的新型免标记免疫电化学传感器的制备,将石墨烯、二茂铁的高效催化及壳聚糖的优良生物相容性和成膜性、离子液体的导电性等优势充分结合构建了电化学免疫传感器。通过循环伏安法及交流阻抗对修饰的电极进行表征,在最优条件下,癌胚抗原的质量浓度在0.2~50.0 ng/mL的范围内与差分脉冲伏安法峰电流呈良好的线性关系,回归方程为Δi=0.38-1.31ρ,相关系数分别为0.9967,检测限为0.06 ng/mL,该传感器可用于人血清样品的测定。  相似文献   

17.
构建了新型甲胎蛋白(AFP)夹心免疫传感器.采用金纳米粒子-氧化石墨烯-普鲁士蓝纳米立方体(AuNP-GO-PBNCs)纳米复合材料标记甲胎蛋白(AFP)二抗,将制备的金-聚多巴胺-四氧化三铁(Au-PDA-Fe3O4)磁性纳米复合物固定在自制的磁性电极表面,通过吸附作用固定AFP一抗,用牛血清白蛋白(BSA)封闭电极上的非特异性吸附位点.在37℃下与AFP抗原溶液孵育50 min,最后将电极放入AuNP-GO-PBNCs纳米复合材料标记的二抗溶液中孵育,基于此建立了采用普鲁士蓝(PB)标记的的夹心免疫传感器检测AFP的方法.在最佳实验条件下,PB催化H2O2氧化的响应电流与AFP的浓度表现出两段线性关系,线性范围分别为0.005~1.000 ng/mL和1~20 ng/mL, 检出限(LOD, S/N=3)为1.0 pg/mL.本方法具有灵敏度高、选择性好的特点.  相似文献   

18.
一种基于纳米二氧化硅增强凝集反应的压电免疫传感器   总被引:1,自引:0,他引:1  
本文提出了一种基于抗体包被纳米粒子的简单快速的压电免疫凝集法,用于蛋白质检测。该方法原理是利用羊抗人IgG(G-anti-hIgG)包被的二氧化硅(或金)纳米粒子和人IgG(hIgG)发生免疫凝集反应而使得压电晶体频率发生改变进行测定。当凝集反应发生时,修饰在探针表面的G-anti-hIgG通过hIgG与G-anti-hIgG包被的纳米粒子结合,将质量效应和粘弹性因素叠加作用于压电晶体。结果表明这使得背景值大幅减小而信号明显增强。另外,对修饰后了抗体及结合免疫复合物的探针表面进行了SEM表征,对使用聚乙二醇作为增敏剂和实验最佳离子强度、pH值进行了优化选择。该传感器检测hIgG线性范围是0.26-16.7 mg mL-1,最低检出限为84 ng mL-1。  相似文献   

19.
本文利用Nafion-氧化石墨烯复合物和硫堇构建了葡萄糖生物传感器。首先将氧化石墨烯分散在0.2%Nafion溶液中制得Nafion-氧化石墨烯的复合物,并将其固定在玻碳电极表面,通过静电吸附将带正电荷的硫堇吸附到Nafion-氧化石墨烯复合膜修饰的玻碳电极表面,然后利用硫堇的氨基和醛基化葡萄糖氧化酶的醛基共价键合作用将葡萄糖氧化酶固定到电极表面。实验表明该传感器响应快、灵敏度高、稳定性好。传感器的灵敏度为7.68μAcm-2(mmol·L-1)-1。  相似文献   

20.
研制了一种基于纳米金固定半抗原的间接竞争电化学免疫传感器,可灵敏检测克伦特罗.在金电极表面组装1,6-己二硫醇单分子膜,通过Au-S共价作用连接纳米金颗粒,通过吸附作用固定克伦特罗牛血清白蛋白偶联物.样品中的待测组分与固定化的克伦特罗偶联物竞争结合单克隆抗体,碱性磷酸酯酶标记的二抗选择性地与电极表面捕获的一抗反应,进而催化底物1-萘酚磷酸酯水解生成1-萘酚,在电极表面氧化产生电信号.在优化的实验条件下,克伦特罗浓度在0.1~1000 μg/L范围内与电流强度线性相关,线性方程为I(A)-8.79× 10-7-2.66× 10-7logC (μg/L),相关系数0.9960,检出限达20 ng/L.同时测定了猪肉及猪肝样品中克伦特罗含量,相对标准偏差平均值为7.0%,加标回收率在89.1%~105.6%之间,与传统的间接竞争酶联免疫吸附法对照,结果无显著性差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号