首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
本文对近年来电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱(ICP-MS)在中药微量元素及形态分析中的应用进行了评述,讨论了应用ICP-AES/MS技术测定中药微量元素样品处理和各种分析方法,引用文献58篇。微波消解可作为中药微量元素分析理想的样品处理方法;ICP-AES/MS及各种联用技术在中药微量元素含量及形态分析中将发挥越来越重要的作用。  相似文献   

2.
This paper focuses on the applicability of the temporal (TPS) and spatial carrier (SCPS) phase-shifting techniques to the time-average interferogram intensity modulation distribution determination. Both techniques use the same mathematical formulae, but in different domains: temporal and spatial ones. They are sensitive to different types of errors. The influence of main experimental errors: phase-step miscalibration, spatial carrier miscalibration, average intensity changes and intensity noise in both the presented techniques on the fringe function determination (|J0| or J02 in case of sinusoidal vibrations), is discussed. The techniques are compared to find the most appropriate one. The time-average technique with heterodyning for small vibration–amplitude measurements is also discussed. The application of the SCPS method to this technique is shown for the first time.  相似文献   

3.
Abstract: This article presents a critical evaluation of the analytical procedures used for the determination of lead in seawater, which is important because lead is a good indicator of marine pollution caused by human activities. Sampling, storage, and pretreatment techniques are briefly overviewed, including the significance of systematic errors that cannot be corrected later on. The main techniques in this article are electrothermal–atomic absorption spectrometry (ET-AAS), inductively coupled plasma–mass spectrometry (ICP-MS), and voltammetry. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma–optical emission spectrometry (ICP-OES) are treated as well, although their limits of quantification are not sufficient for a determination of lead in unpolluted seawater. Even when separation and preconcentration techniques are applied, these techniques are only capable of detecting lead in polluted coastal seawater. Separation and preconcentration are actually also required for ET-AAS and ICP-MS in order to determine the lowest concentrations of lead found in unpolluted open-ocean seawater, which is still a challenge for the analytical chemist.  相似文献   

4.
Summary A few retrieval techniques for the estimate of precipitation from infrared satellite data, already tested over the tropical Atlantic Ocean and over continental mid-latitude regions, have been used to verify their performance for the study of the western Mediterranean Sea climate. An attempt to optimize these techniques has been made, and a detailed comparison of the remotely sensed precipitation within situ continuous data, obtained with the rain gauge network in Sardinia for two significant periods of 1988, is presented. The results obtained give some useful indications on the performance of these techniques, on the best area time resolution to be used for their validation, and on the possible applications of the retrieved information.  相似文献   

5.
The techniques of inverse Raman spectroscopy, Raman‐induced polarization spectroscopy (RIPS), and optical heterodyne RIPS (OHD‐RIPS) are compared by probing the Q‐branch of the nitrogen molecule. The signal is measured employing either a photomultiplier tube (low background level–RIPS) or a photodetector (high background level–IRS and OHD‐RIPS). The measurements are performed using atmospheric mixtures of N2 Ar with concentrations varying from 0 to 79% N2. This strategy permits estimation of detection limits using the different techniques. Pump and probe energy levels are varied independently to study signal dependence on laser irradiance. A theoretical treatment is presented on the basis of the Raman susceptibility equations, which permits the calculation of spectra for all three techniques. Calculated Q‐branch spectra are compared with the measured spectra for the interactions of a linearly polarized probe beam with a linearly or circularly polarized pump beam. The polarizer angle in the detection path for OHD‐RIPS has a dramatic effect on the shape of the spectrum. The calculated and experimental OHD‐RIPS spectra are in good agreement over the entire range of investigated polarizer angles. Detection limits using these techniques are analyzed to suggest their applicability for measuring other species of importance in combustion and plasma systems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study is to enhance existing knowledge of different techniques developed for the characterization of stability and particle sizing of nanoparticles in dense dispersions subjected to interparticulate and hydrodynamic forces. Silica suspension, commercially known as Klebosol® 30R50 and consisting of a particle size of 80 nm on average, was investigated in the study over a wide range of concentrations. The investigations were carried out using different optical and acoustic techniques such as laser diffraction, multiple light scattering, photon correlation spectroscopy and acoustic spectroscopy. The study details the capabilities and limitations of these modern techniques based on the different physical principles behind the characterization of the size distribution of particles in suspensions. The results are presented in terms of particle size ranges, solid concentration and technological aspects such as online and offline analysis. An important finding is that many of these modern techniques need to be improved for applications at higher concentrations since the standard models become practically invalid because of the complex interaction of acoustic and optical waves with particles in suspensions of silica.  相似文献   

7.
Uncertainty quantification for complex deep learning models is increasingly important as these techniques see growing use in high-stakes, real-world settings. Currently, the quality of a model’s uncertainty is evaluated using point-prediction metrics, such as the negative log-likelihood (NLL), expected calibration error (ECE) or the Brier score on held-out data. Marginal coverage of prediction intervals or sets, a well-known concept in the statistical literature, is an intuitive alternative to these metrics but has yet to be systematically studied for many popular uncertainty quantification techniques for deep learning models. With marginal coverage and the complementary notion of the width of a prediction interval, downstream users of deployed machine learning models can better understand uncertainty quantification both on a global dataset level and on a per-sample basis. In this study, we provide the first large-scale evaluation of the empirical frequentist coverage properties of well-known uncertainty quantification techniques on a suite of regression and classification tasks. We find that, in general, some methods do achieve desirable coverage properties on in distribution samples, but that coverage is not maintained on out-of-distribution data. Our results demonstrate the failings of current uncertainty quantification techniques as dataset shift increases and reinforce coverage as an important metric in developing models for real-world applications.  相似文献   

8.
Strategies for spatially resolved soot volume-fraction measurements have been investigated in sooting laboratory flames with known soot characteristics. Two techniques were compared: Laser-Induced Fluorescence in C2 from Laser-Vaporized Soot (LIF(C2)LVS), and Laser-Induced Incandescence of soot (LII). The LII signal is the increased temperature radiation from soot particles which have been heated to temperatures of several thousand degrees as a consequence of absorption of laser radiation. The LIF(C2)LVS technique is based on the production of C2 radicals from laser-vaporized soot which occurs for laser intensities ≥107 W/cm2. A laser wavelength is chosen such that besides vaporizizng the soot, it also excites the C2 radicals, and the subsequent C2 fluorescence signal is detected. The signals from both techniques showed good correlation with soot volume fractions in the studied flame. The dependence of the signals on experimental parameters was studied, and the influence of interfering radiation, such as background flame luminosity and fluorescence from polyaromatic hydrocarbons, on studied signals was established. The potential of the two techniques for imaging of soot volume fractions in laboratory flames was demonstrated. Advantages and disadvantages of the studied techniques are discussed.  相似文献   

9.
Abstract

Techniques for the detection of hazardous low‐volatility contaminants on surfaces are reviewed. These techniques include both point detection (i.e., in situ) and standoff detection (i.e., detection beyond the effective range of the hazard). For low‐volatility agents, a standoff distance may range from a few centimeters to hundreds of meters, depending upon physical and deposition characteristics. This survey has been restricted to optical techniques that can detect contaminants on “realistic” surfaces (including civilian and military painted surfaces) and are hand‐held or man‐portable or those techniques that are anticipated to be made hand‐held or man‐portable within 5 years to one decade.

A range of spectroscopic techniques are treated along with their requirements for power and consumables. Detection limits for these techniques are presented in the context of in‐service technologies and in the context of civilian and military toxicity/exposure limits for various chemical warfare agents. The effects of aerosols on various spectroscopic techniques are reviewed.  相似文献   

10.
The biosciences require the development of methods that allow a non-invasive and rapid investigation of biological systems. In this aspect, high-end imaging techniques allow intravital microscopy in real-time, providing information on a molecular basis. Far-field fluorescence imaging techniques are some of the most adequate methods for such investigations. However, there are great differences between the common fluorescence imaging techniques, i.e., wide-field, confocal one-photon and two-photon microscopy, as far as their applicability in diverse bioscientific research areas is concerned. In the first part of this work, we briefly compare these techniques. Standard methods used in the biosciences, i.e., steady-state techniques based on the analysis of the total fluorescence signal originating from the sample, can successfully be employed in the study of cell, tissue and organ morphology as well as in monitoring the macroscopic tissue function. However, they are mostly inadequate for the quantitative investigation of the cellular function at the molecular level. The intrinsic disadvantages of steady-state techniques are countered by using time-resolved techniques. Among these fluorescence lifetime imaging (FLIM) is currently the most common. Different FLIM principles as well as applications of particular relevance for the biosciences, especially for fast intravital studies are discussed in this work.   相似文献   

11.
The paper presents a study on the atmospheric pressure dielectric barrier discharge plasma, generated with Teflon covered electrodes in flowing helium at a driving frequency of 1.74 MHz. Besides generation techniques and running principle, an operating stability diagram is presented for the discharge. By means of optical emission techniques, characteristic temperatures were determined and the reactive species were identified. The applicability of generated discharge was tested by surface functionalization and bacterial inactivation. It was found that even for short treatment times the plasma is efficient for surface treatment and it can inactivate Escherichia coli with a D-time of 10 s.  相似文献   

12.
The DICOM (Digital Imaging and COmmunication in Medicine) standard provides a framework for a diagnostically-accurate representation, processing, transfer, storage and display of medical imaging data. Information hiding in DICOM is currently limited to the application of digital media steganography and watermarking techniques on the media parts of DICOM files, as well as text steganographic techniques for embedding information in metadata of DICOM files. To improve the overall security of the DICOM standard, we investigate its susceptibility to network steganographic techniques. To this aim, we develop several network covert channels that can be created by using a specific transport mechanism – the DICOM Message Service and Upper Layer Service. The bandwidth, undetectability and robustness of the proposed covert channels are evaluated, and potential countermeasures are suggested. Moreover, a detection mechanism leveraging entropy-based metrics is introduced and its performance has been assessed.  相似文献   

13.
A variety of techniques for the inclusion of dynamical fermions in lattice gauge theory is examined. Three pseudo-fermionic techniques that have the characteristics desirable for an unquenched simulation of four-dimensional QCD are studied in detail. Langevin and Metropolis pseudo-fermionic techniques are implemented for a 64×64 lattice on the Distributed Array Processor and their relative merits examined both for free fermions and the lattice Schwinger model.  相似文献   

14.
A real time nondestructive temperature measurement technique based on laser holographic interference tomography technique is presented. An He–Ne laser is used as light source, and a CCD video camera is used to grab the interferogram. This laser holographic tomography technique is applied to the measurement of the temperature fields generated by two heated rods. Since data error is inevitable in engineering measurement, it is necessary to study the reconstruction techniques for reconstructing the temperature field. Three techniques including convolution back projection (CBP), algebra reconstruction technique (ART) and simultaneous iterative reconstruction technique (SIRT) are studied. Based on the reconstruction techniques and experimental situation, ART is used to reconstruct the asymmetric temperature fields. The thermocouples are used to measure the temperatures of the two heated rods. Comparing the reconstructed result with the measured temperature value, a satisfactory result is obtained.  相似文献   

15.
Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide–spacer–lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.  相似文献   

16.
A flatly topped circular beam (“top-hat beam”) is employed as the excitation beam for photothermal deflection and surface thermal lens techniques. The Fresnel diffraction model is applied to describe the photothermal signals. The theoretical comparison between a Gaussian beam and a top-hat beam excited photothermal signal amplitudes shows that the use of the top-hat beam excitation improves the measurement sensitivity of the photothermal techniques. Experimental results for both photothermal deflection and surface thermal lens are presented. The potential applications of the top-hat beam excited photothermal techniques are highlighted.  相似文献   

17.
18.
The transitions from or to strange nonchaotic attractors are investigated by recurrence plot-based methods. The techniques used here take into account the recurrence times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize. The performance of these techniques is shown for the Heagy-Hammel transition to SNAs and for the fractalization transition to SNAs for which other usual nonlinear analysis tools are not successful.   相似文献   

19.
We have successfully developed a Seebeck coefficient Standard Reference Material (SRM), Bi2Te3, that is crucial for inter-laboratory data comparison and for instrument calibration. Certification measurements were performed using two different techniques on 10 samples randomly selected from a batch of 390 bars. The certified Seebeck coefficient values are provided from 10 to 390 K. The availability of this SRM will validate the measurement accuracy, leading to a better understanding of the structure/property relationships, and the underlying physics of new and improved thermoelectric materials. An overview of the measurement techniques and data analysis is given.  相似文献   

20.
Plant tissues must be dehydrated for observation in most electron microscopes. Although a number of sample processing techniques have been developed for preserving plant tissues in their original form and structure, none of them are guaranteed artefact-free. The current paper reviews common scanning electron microscopy techniques and the sample preparation methods employed for visualisation of leaves under specific types of electron microscopes. Common artefacts introduced by specific techniques on different leaf types are discussed. Comparative examples are depicted from our lab using similar techniques; the pros and cons for specific techniques are discussed. New promising techniques and microscopes, which can alleviate some of the problems encountered in conventional methods of leaf sample processing and visualisation, are also discussed. It is concluded that the choice of technique for a specific leaf sample is dictated by the surface features that need to be preserved (such as trichomes, epidermal cells or wax microstructure), the resolution to be achieved, availability of the appropriate processing equipment and the technical capabilities of the available electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号