首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the reactions of [PtCl(en)(ACRAMTU-S)](NO(3))(2) (2) (en = ethane-1,2-diamine; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, acridinium cation, 1), the prototype of a new class of cytotoxic DNA-targeted agents, with 2'-deoxyguanosine (dGuo) and random-sequence native DNA by in-line liquid chromatography/mass spectrometry (LC/MS) and NMR spectroscopy ((1)H, (195)Pt) to identify the covalent adducts formed by platinum. In the mononucleoside model system, two adducts are observed, [Pt(en)(ACRAMTU)(dGuo)](3+) (P1, major) and [Pt(en)(dGuo)(2)](2+) (P2, minor). The reaction, which proceeds significantly slower (half-life 11-12 h at 37 degrees C, pH 6.5) than analogous reactions with cisplatin and reactions of 2 with double-stranded DNA, results in the unexpected displacement of the sulfur-bound acridine ligand in approximately 15% of the adducts. This reactivity is not observed in double-stranded DNA, rendering 1 a typical nonleaving group in reactions with this potential biological target. In enzymatic digests of calf thymus DNA treated with 2, three adducts were identified: [Pt(en)(ACRAMTU)(dGuo)](3+) (A1, approximately 80%), [Pt(en)(ACRAMTU)[d(GpA)]](2+) (A2, approximately 12%), and [Pt(en)(ACRAMTU)[d(TpA)]](2+) (A3, approximately 8%). A1 and P1 proved to be identical species. In the dinucleotide adducts A2 and A3, complex 2 covalently modifies adenine at GA and TA base steps, which are high-affinity intercalation sites of the acridine derivative 1. A2 and A3, which may be formed in the minor groove of DNA, are the first examples of monofunctional adenine adducts of divalent platinum formed in double-stranded DNA. The analysis of the adduct profile indicates that the sequence specificity of 1 plays an important role in the molecular recognition between DNA and the corresponding conjugate, 2. Possible biological consequences of the unusual adduct profile are discussed.  相似文献   

2.
The thermodynamics and kinetics for the monofunctional binding of the antitumor drug cisplatin, cis-diamminedichloroplatinum(II), to a purine base site of DNA were studied computationally using guanine and adenine as model reactants. A dominating preference for initial attack at the N7-position of guanine is established experimentally, which is a crucial first step for the formation of a 1,2-intrastrand cross-link of adjacent guanine bases that leads to bending and unwinding of DNA. These structural distortions are proposed ultimately to be responsible for the anticancer activity of cisplatin. Utilizing density functional theory in combination with a continuum solvation model, we developed a concept for the initial Pt-N7 bond formation to atomic detail. In good agreement with experiments that suggested DeltaG++ = approximately 23 kcal/mol for the monofunctional platination of guanine, our model gives DeltaG++ = 24.6 kcal/mol for guanine, whereas 30.2 kcal/mol is computed when adenine is used. This result predicts that guanine is 3-4 orders of magnitude more reactive toward cisplatin than adenine. A detailed energy decomposition and molecular orbital analysis was conducted to explain the different barrier heights. Two effects are equally important to give the preference for guanine over adenine: First, the transition state is characterized by a strong hydrogen bond between the ammine-hydrogen of cisplatin and the O=C6 moiety of guanine in addition to a stronger electrostatic interaction between the two reacting fragments. When adenine binds, only a weak hydrogen bond forms between the chloride ligand of cisplatin and the H(2)N-C6 group of adenine. Second, a significantly stronger molecular orbital interaction is identified for guanine compared to adenine. A detailed MO analysis is presented to provide an intuitive view into the different electronic features governing the character of the Pt-N7 bond in platinated purine bases.  相似文献   

3.
The first and second substitution reactions between activated (hydrolyzed) cisplatin, Pt(NH3)2(H2O)2(2+), and purine bases guanine and adenine are explored using the B3LYP hybrid functional, IEF-PCM solvation models, and large basis sets. The computed free energy barrier for the first substitution is 19.5 kcal/mol for guanine (exptl value = 18.3 kcal/mol) and 24.0 kcal/mol for adenine. The observed predominance toward guanine in the first substitution is explained in terms of significantly larger stabilization energy for the initially formed complex, compared with adenine, in combination with favored kinetics, and represents a revised view of the proposed mechanism for cisplatin binding to DNA. For the second substitution, the computed barrier for Pt(NH3)2G2(2+) head-to-head formation is 22.5 kcal/mol, in very good agreement with experimental data for adduct closure (23.4 kcal/mol). Again, a higher stability in complexation with G over A is ascribed as the main contributing factor favoring G over A substitution. The calculations provide a first explanation for the predominance of 1,2-d(GpG) over 1,2-d(ApG) intrastrand didentate adducts, and the origin of the 5'-3' direction specificity of the 1,2-d(ApG) adducts.  相似文献   

4.
5.
The complexes PtRu(5)(CO)(15)(PMe(2)Ph)(mu(6)-C) (2), PtRu(5)(CO)(14)(PMe(2)Ph)(2)(mu(6)-C) (3), PtRu(5)(CO)(15)(PMe(3))(mu(6)-C) (4), PtRu(5)(CO)(14)(PMe(3))(2)(mu(6)-C) (5), and PtRu(5)(CO)(15)(Me(2)S)(mu(6)-C) (6) were obtained from the reactions of PtRu(5)(CO)(16)(mu(6)-C) (1) with the appropriate ligand. As determined by NMR spectroscopy, all the new complexes exist in solution as a mixture of isomers. Compounds 2, 3, and 6 were characterized crystallographically. In all three compounds, the six metal atoms are arranged in an octahedral geometry, with a carbido carbon atom in the center. The PMe(2)Ph and Me(2)S ligands are coordinated to the Pt atom in 2 and 6, respectively. In 3, the two PMe(2)Ph ligands are coordinated to Ru atoms. In solution, all the new compounds undergo dynamical intramolecular isomerization by shifting the PMe(2)Ph or Me(2)S ligand back and forth between the Pt and Ru atoms. For compound 2, DeltaH++ = 15.1(3) kcal/mol, DeltaS++ = -7.7(9) cal/(mol.K), and DeltaG(298) = 17.4(6) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 4, DeltaH++ = 14.0(1) kcal/mol, DeltaS++ = -10.7(4) cal/(mol.K), and DeltaG(298) = 17.2(2) kcal/mol for the transformation of the major isomer to the minor isomer; for compound 6, DeltaH++ = 18(1) kcal/mol, DeltaS++ = 21(5) cal/(mol.K) and DeltaG(298) = 12(2) kcal/mol. The shifts of the Me(2)S ligand in 6 are significantly more facile than the shifts for the phosphine ligand in compounds 2-5. This is attributed to a more stable ligand-bridged intermediate for the isomerizations of 6 than that for compounds 2-5. The intermediate for the isomerization of 6 involves a bridging Me(2)S ligand that can use two lone pairs of electrons for coordination to the metal atoms, whereas a tertiary phosphine ligand can use only one lone pair of electrons for bridging coordination.  相似文献   

6.
Intercalation into DNA (insertion between a pair of base pairs) is a critical step in the function of many anticancer drugs. Despite its importance, a detailed mechanistic understanding of this process at the molecular level is lacking. We have constructed, using extensive atomistic computer simulations and umbrella sampling techniques, a free energy landscape for the intercalation of the anticancer drug daunomycin into a twelve base pair B-DNA. A similar free energy landscape has been constructed for a probable intermediate DNA minor groove-bound state. These allow a molecular level understanding of aspects of the thermodynamics, DNA structural changes, and kinetic pathways of the intercalation process. Key DNA structural changes involve opening the future intercalation site base pairs toward the minor groove (positive roll), followed by an increase in the rise, accompanied by hydrogen bonding changes of the minor groove waters. The calculated intercalation free energy change is -12.3 kcal/mol, in reasonable agreement with the experimental estimate -9.4 kcal/mol. The results point to a mechanism in which the drug first binds to the minor groove and then intercalates into the DNA in an activated process, which is found to be in general agreement with experimental kinetic results.  相似文献   

7.
8.
The alkylation reaction of 9-methyladenine and 9-methylguanine (as prototype substrates of deoxy-adenosine and -guanosine), by the parent o-quinone methide (o-QM), has been investigated in the gas phase and in aqueous solution, using density functional theory at the B3LYP/6-311+G(d,p) level. The effect of the medium on the reactivity, and on the stability of the resulting adducts, has been investigated by using the C-PCM solvation model to assess which adduct arises from the kinetically favorable path, or from an equilibrating process. The calculations indicate that the most nucleophilic site of the methyl-substituted nucleobases in the gas phase is the guanine oxygen atom (O(6)) (DeltaG()(gas) = 5.6 kcal mol(-)(1)), followed by the adenine N1 (DeltaG)(gas) = 10.3 kcal mol(-)(1)), while other centers exhibit a substantially lower nucleophilicity. The bulk effect of water as a solvent is the dramatic reduction of the nucleophilicity of both 9-methyladenine N1 (DeltaG)(solv) = 14.5 kcal mol(-)(1)) and 9-methylguanine O(6) (DeltaG)(solv) = 17.0 kcal mol(-)(1)). As a result there is a reversal of the nucleophilicity order of the purine bases. While O(6) and N7 nucleophilic centers of 9-methylguanine compete almost on the same footing, the reactivity gap between N1 and N7 of 9-methyladenine in solution is highly reduced. Regarding product stability, calculations predict that only two of the adducts of o-QM with 9-methyladenine, those at NH(2) and N1 positions, are lower in energy than reactants, both in the gas phase and in water. However, the adduct at N1 can easily dissociate in water. The adducts arising from the covalent modification of 9-methylguanine are largely more stable than reactants in the gas phase, but their stability is markedly reduced in water. In particular, the oxygen alkylation adduct becomes slightly unstable in water (DeltaG(solv) = +1.4 kcal mol(-)(1)), and the N7 alkylation product remains only moderately more stable than free reactants (DeltaG(solv) = -2.8 kcal mol(-)(1)). Our data show that site alkylations at the adenine N1 and the guanine O(6) and N7 in water are the result of kinetically controlled processes and that the selective modification of the exo-amino groups of guanine N2 and adenine N6 are generated by thermodynamic equilibrations. The ability of o-QM to form several metastable adducts with purine nucleobases (at guanine N7 and O(2), and adenine N1) in water suggests that the above adducts may act as o-QM carriers.  相似文献   

9.
Transport properties (translational and rotational) of water in the two grooves of the B-DNA duplex are known to be different from those in the bulk. Here, we use a recently developed theoretical scheme to compute the entropies of water molecules in both of the grooves of DNA and compare them with that in the bulk. The scheme requires as input both translational and rotational velocity autocorrelation function (C(V)(t) and C(omega)(t), respectively) data. These velocity autocorrelation functions were computed from an atomistic MD simulation of a B-DNA duplex (36 base pairs long) in explicit water (TIP3P). The average values of the entropy of water at 300 K in both of the grooves of DNA (the TS value in the major groove is 6.71 kcal/mol and that in the minor groove is 6.41 kcal/mol) are found to be significantly lower than that in bulk water (the TS value is 7.27 kcal/mol). Thus, the entropic contribution to the free energy change (TDeltaS) of transferring a minor groove water molecule to the bulk is 0.86 kcal/mol and of transferring a major groove water to the bulk is 0.56 kcal/mol at 300 K, which is to be compared with 1.44 kcal/mol for melting of ice at 273 K. We also calculate the energy of interaction of each water molecule with the rest of the atoms in the system and hence calculate the chemical potential (Helmholtz free energy per water molecule, A = E - TS) in the different domains. The identical free energy value of water molecules in the different domains proves the robustness of the scheme. We propose that the configurational entropy of water in the grooves can be used as a measure of the mobility (or microviscosity) of water molecules in a given domain.  相似文献   

10.
The PtII-coordination complex [PtCl2(DAB)] (DAB=2,3-diaminobutane) belongs to a class of cytotoxic cisplatin analogues that contain chiral diamine ligands. Enantiomeric pairs of these compounds have attracted particular interest because they have different effects on different DNA conformations, which, in turn, influences the binding of damaged-DNA-processing enzymes that control downstream effects of the adducts, and thus exhibit different biological activities of the enantiomers. Herein, we studied the translesion synthesis across the major 1,2-d(GG) intrastrand cross-link formed by the R,R and S,S enantiomers of [Pt(DAB)]2+ in the TGGT sequence by using the enzyme that catalyzes the polymerization of deoxyribonucleotides into a DNA strand. We also employed differential scanning calorimetry (DSC) to measure the thermodynamic changes associated with replication-bypass past 1,2-d(GG) adducts of the [Pt(DAB)]2+ enantiomers. In the sequence TGGT, the 1,2-d(GG) intrastrand cross-links that were formed by the enantiomeric pairs of [Pt(DAB)]2+ inhibited DNA polymerization in a chirality-dependent manner. The thermodynamic data helped to understand the effect of the alterations in thermodynamic stability of DNA caused by the Pt-d(GG) adducts upon DNA polymerization across these lesions. Moreover, these data can possibly explain the influence of these alterations on the ability of many DNA polymerases to bypass adducts of antitumor platinum drugs. These results also highlighted the usefulness of DSC in evaluating the impact of DNA adducts of platinum-coordinated compounds on the processing of these lesions by damaged-DNA processing-enzymes.  相似文献   

11.
The bifunctional binding of the anticancer drug cisplatin to two adjacent nucleobases in DNA is modeled using density functional theory. Previous experimental studies revealed that cisplatin binding to adjacent guanine and adenine is sensitive to nucleobase sequence. Whereas AG 1,2-intrastrand cross-links are commonly observed, the analogous GA adducts are not known. This study focuses on understanding this directional preference by constructing a full reaction profile using quantum chemical simulation methods. Monofunctional and bifunctional cisplatin adducts were generated, and the transition states that connect them were located for the dinucleotides d(pApG) and d(pGpA), assuming that initial platination takes place at the guanine site. Our computer simulations reveal a significant kinetic preference for formation of the AG over the GA adduct. The activation free energies of approximately 23 kcal/mol for AG and approximately 32 kcal/mol for GA suggest that bifunctional closure is approximately 6 orders of magnitude faster for AG than for GA. A strong hydrogen bond between one of the ammine ligands of cisplatin and the 5' phosphate group of the DNA backbone is responsible for the stabilization of the transition state that affords the AG adduct. This interaction is absent in the transition state that leads to the GA adduct because the right-handed helix of the DNA backbone places the phosphate out of reach for the ammine ligand. We found only an insignificant thermodynamic difference between AG and GA adducts and conclude that the preference of AG over GA binding is largely under kinetic control. The puckering of the deoxyribose ring plays an important role in determining the energetics of the bifunctional platination products. Whereas the 3'-nucleoside remains in the native C2'-endo/C3'-exo form of B-DNA, the deoxyribose of the 5'-nucleoside always adopts the C2'-exo/C3'-endo puckering in our simulations. A detailed analysis of the energies and structures of the bifunctional adducts revealed that the observed sugar puckering patterns are necessary for platinum to bind in a relaxed coordination geometry.  相似文献   

12.
Thermodynamic data are reported for intermolecular hydrogen-bonding association of 1 and 2 equiv of phenol with [1,3-bis(diphenylphosphino)propane](phenylethane-1,2-diolato)platinum(II) ((dppp)Pt(Ped)) in dichloromethane solution: = -7.0 +/- 0.1 kcal/mol, = -7.7 +/- 0.4 kcal/mol, = -11.3 +/- 0.4 eu, and = -17.8 +/- 1.2 eu. For comparison, the thermodynamics for hydrogen bonding of phenol to triphenylphosphine oxide in dichloromethane were also determined: DeltaH degrees = -5.1 +/- 0.3 kcal/mol; DeltaS degrees = -8.8 +/- 1.0 eu. Competitive coordination exchange reactions have been used to determine the apparent intramolecular hydrogen bond strengths in (dppp)Pt(1,2-O,O'-glycerolate) and (dppp)Pt(1,2-O,O'-butane-1,2,4-triolate) in both dichloromethane (DeltaG(313) = -2.05 +/- 0.05 and -2.52 +/- 0.06 kcal/mol, respectively) and pyridine (DeltaG(313) = -0.62 +/- 0.03 and -0.82 +/- 0.03 kcal/mol, respectively). Based on these findings, the role of hydrogen-bonding interactions in determining the regioselectivities of complexation of carbohydrates to diphosphine Pt(II) is discussed.  相似文献   

13.
Platinum (Pt)–DNA adducts formed by the anti-tumor agent cisplatin are recognized by the DNA mismatch repair (MMR) system. To investigate the involvement of MMR proteins including hMLH1 in the removal of these adducts, we developed a mL-scale wet-digestion method for inductively coupled plasma mass spectrometry (ICP-MS). The detection limit was 0.01 ng mL–1 Pt, which corresponded to 2 pg Pt/g DNA when 10 g of DNA was used. The mean relative errors were 5.4% or better for a dynamic range of 0.01–10 ng mL–1 Pt. DNA (~500 g) had no matrix effect. To improve the accuracy, DNA preparations were treated with ribonuclease and the apparent reduction in the concentration of Pt was corrected using cellular DNA levels, which were determined with Hoechst 33258. No significant differences were observed, in terms of the formation of Pt–DNA adducts or their removal over 6 h, between hMLH1-deficient HCT116 cells, a human colorectal cancer cell line, and hMLH1-complemented HCT116+ch3 cells (n=5; P>0.05), indicating that the hMLH1-dependent DNA repair systems contribute to neither the formation nor the removal of the adducts at detectable levels. In addition, approximately 19% of the adducts were removed within 6 h in both cell lines. A time course analysis (~24 h) suggested that the removal of cisplatin-generated Pt–DNA adducts follows first-order kinetics (t1/2=32 h). The amount of Pt–DNA adduct formed by oxaliplatin in 1 h was 56% (ratio of means) of that generated by an equimolar concentration of cisplatin in HCT116. The proposed procedure could be useful for determining Pt–DNA adducts formed by Pt(II) complexes.  相似文献   

14.
The first and second substitution reactions binding of the anticancer drug trans‐[Pt((CH3)2C?NOH)((CH3)2CHNH2)Cl2] to purine bases were studied computationally using a combination of density functional theory and isoelectric focusing polarized continuum model approach. Our calculations demonstrate that the trans monoaqua and diaqua reactant complexes (RCs) can generate either trans‐ or cis‐monoadducts via identical or very similar trans trigonal‐bipyramidal transition‐state structures. Furthermore, these monoadducts can subsequently close by coordination to the adjacent purine bases to form 1,2‐intrastrand Pt‐DNA adducts and eventually distort DNA in the same way as cisplatin. Thus, it is likely that the transplatin analogues have the same mechanism of anticancer activity as cisplatin. For the first substitutions, the activation free energies of monoaqua complexes are always lower than that of diaqua complexes. The lowest activation energy for monoaqua substitutions is 16.2 kcal/mol for guanine and 16.5 kcal/mol for adenine, whereas the lowest activation energy for diaqua substitutions is 17.1 kcal/mol for guanine and 25.9 kcal/mol for adenine. For the second substitutions, the lowest activation energy from trans‐monoadduct to trans‐diadduct is 19.1 kcal/mol for GG adduct and 20.7 kcal/mol for GA adduct, whereas the lowest activation energy from cis‐monoadduct to cis‐diadduct is 18.9 kcal/mol for GG adduct and 18.5 kcal/mol for GA adduct. In addition, the first and second substitutions prefer guanine over adenine, which is explained by the remarkable larger complexation energy for the initial RC in combination with lower activation energy for the guanine substitution. Overall, the hydrogen‐bonds play an important role in stabilizing these species of the first and second substitutions. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
We have examined the backbone dynamics of two alternating purine-pyrimidine dodecamers. One sequence consists of "pure" GC bases; the other one contains 5-methylcytosines. The effect of the methyl groups on the backbone substates BI/BII was investigated by means of molecular dynamics. The methylation influences, on one hand, the transition barrier between BI and BII and, on the other hand, the state of equilibrium. The kinetic consequences are an increase of the DeltaG of Gp5mC steps by 1.5 kcal/mol and a decrease of the DeltaG of 5mCpG steps by 0.8 kcal/mol (compared with the nonmethylated DNA). Thus, the additive group differentiates between the two occurring dinucleotide steps and renders the phosphate of the 5-methylcytosine more rigid, as proposed by experimental studies. The thermodynamic consequences are an increase of the DeltaG of Gp5mC steps by 1.1 kcal/mol and a decrease of the DeltaG of 5mCpG steps by 0.8 kcal/mol. The reason for this shift in equilibrium is still not completely clear on a molecular basis. But we can conclude that the indirect readout of DNA is influenced by methylation.  相似文献   

16.
The different antitumor and other biological effects of the third-generation antitumor platinum drug oxaliplatin [(1R,2R-diamminocyclohexane)oxalatoplatinum(II)] in comparison with those of conventional cisplatin [cis-diamminedichloridoplatinum(II)] are often explained by the ability of oxaliplatin to form DNA adducts of different conformation and consequently to exhibit different cytotoxic effects. This work describes, for the first time, the structural and biochemical characteristics of the interstrand cross-links of oxaliplatin. We find that: 1) DNA bending, unwinding, thermal destabilization, and delocalization of the conformational alteration induced by the cross-link of oxaliplatin are greater than those observed with the cross-link of cisplatin; 2) the affinity of high-mobility-group proteins (which are known to mediate the antitumor activity of platinum complexes) for the interstrand cross-links of oxaliplatin is markedly lower than for those of cisplatin; and 3) the chirality at the carrier 1,2-diaminocyclohexane ligand can affect some important structural properties of the interstrand cross-links of cisplatin analogues. Thus, the information contained in the present work is also useful for a better understanding of how the stereochemistry of the carrier amine ligands of cisplatin analogues can modulate their anticancer and mutagenic properties. The significance of this study is also reinforced by the fact that, in general, interstrand cross-links formed by various compounds of biological significance result in greater cytotoxicity than is expected for monofunctional adducts or other intrastrand DNA lesions. Therefore, we suggest that the unique properties of the interstrand cross-links of oxaliplatin are at least partly responsible for this drug's unique antitumor effects.  相似文献   

17.
BACKGROUND: Many conventional DNA alkylating anticancer drugs form adducts in the major groove of DNA. These are known to be chiefly repaired by both nucleotide (NER) and base (BER) excision repair in eukaryotic cells. Much less is known about the repair pathways acting on sequence specific minor groove purine adducts, which result from a promising new class of anti-tumour agents. RESULTS: Benzoic acid mustards (BAMs) tethering 1-3 pyrrole units (compounds 1, 2 and 3) show increasing DNA sequence selectivity for alkylation from BAM and 1, alkylating primarily at guanine-N7 in the major groove, to 3 which is selective for alkylation in the minor groove at purine-N3 in the sequence 5'-TTTTGPu (Pu=guanine or adenine). This increasing sequence selectivity is reflected in increased toxicity in human cells. In the yeast Saccharomyces cerevisiae, the repair of untargeted DNA adducts produced by BAM, 1 and 2 depends upon both the NER and BER pathways. In contrast, the repair of the sequence specific minor groove adducts of 3 does not involve known BER or NER activities. In addition, neither recombination nor mismatch repair are involved. Two disruptants from the RAD6 mutagenesis defective epistasis group (rad6 and rad18), however, showed increased sensitivity to 3. In particular, the rad18 mutant was over three orders of magnitude more sensitive to 3 compared to its isogenic parent, and 3 was highly mutagenic in the absence of RAD18. Elimination of the sequence specific DNA adducts formed by 3 was observed in the wild type strain, but these lesions persisted in the rad18 mutant. CONCLUSIONS: We have demonstrated that the repair of DNA adducts produced by the highly sequence specific minor groove alkylating agent 3 involves an error free adduct elimination pathway dependent on the Rad18 protein. This represents the first systematic analysis of the cellular pathways which modulate sensitivity to this new class of DNA sequence specific drugs, and indicates that the enhanced cytotoxicity of certain sequence specific minor groove adducts in DNA is the result of evasion of the common excision repair pathways.  相似文献   

18.
Cyanide-catalyzed aldimine coupling was employed to synthesize compounds with 1,2-ene-diamine and alpha-imine-amine structural motifs: 1,2,N,N'-tetraphenyletheylene-1,2-diamine (13) and (+/-)-2,3-di-(2-hydroxyphenyl)-1,2-dihydroquinoxaline (17), respectively. Single-crystal X-ray diffraction provided solid-state structures and density functional theory calculations were used to probe isomeric preferences within this and the related hydroxy-ketone/ene-diol system. The ene-diamine and imine-amine core structures were calculated (B3LYP/6-311++G(d,p)) to be essentially identical in energy (DeltaG = 0.2 kcal/mol in favor of the imine-amine, within the error of the calculation). However, additional effects-such as pi conjugation-in 13 render an ene-diamine structure that is slightly more stable than the imine-amine tautomer (14) (DeltaG = 0.2-0.7 kcal/mol, within the error of the calculation). In contrast, the intramolecular hydrogen bonding present in 17 significantly favors the imine-amine isomer over the ene-diamine tautomer (18) (DeltaG = 7.2-8.9 kcal/mol). For both 13 and 17, the optimized calculated structures (B3LYP/6-31+G(d')) are identical to those observed by single-crystal X-ray diffraction.  相似文献   

19.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号