首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
利用恒电位沉积、循环电位沉积和脉冲电沉积法在DMSO体系中在铜基体上探讨了Eu-Co-Ni合金薄膜的制备.实验结果表明,在0.10mol/LEuCl3-0.10mol/L CoCl2-0.10mol/L NiCl2-0.1 0mol/l LiClO4-DMSO体系中,恒电位沉积技术制备出的Eu-Co-Ni合金膜表面较为粗糙,其中Eu含量为5.46~6.01 wt%,脉冲电沉积技术制备的Eu-Co-Ni合金膜表面平整,致密,附着力好,且有金属光泽,其中Eu含量为6.76%,循环电位扫描技术制备的Eu-Co-Ni合金膜表面平整,致密,附着力好,其中Eu含量为12.43%.通过XRD证明所得的合金薄膜为非晶态.  相似文献   

2.
纳米MnO2超级电容器的研究   总被引:24,自引:0,他引:24  
用固相合成法制备纳米MnO2,作为超级电容器材料,通过循环伏安、交流阻抗与恒电流充放电等测试手段对MnO2电极进行分析.结果表明,以1 mol•L-1 KOH为电解液, MnO2电极在-0.1~0.6 V(vs. Hg/HgO)的电压范围内具有良好的法拉第电容性能.在不同电流密度下,电极比容量达240.25到325.21 F•g-1.恒电流充放电5000次后,电极容量衰减不超过10%.  相似文献   

3.
二甲基甲酰胺中Y-Mg-Co合金膜的电化学制备   总被引:6,自引:0,他引:6  
研究了二甲基甲酰胺(DMF)中Y(Ⅲ) 和Mg(Ⅱ) 及Co(Ⅱ)在Pt电极上的电化学行为.结果表明,Y(Ⅲ)、Mg(Ⅱ)及Co(Ⅱ)在Pt电极上一步不可逆还原为Y(0)、Co(0)和Mg(0).在301 K时,利用循环伏安法分别测定出Mg(ClO4)2-LiClO4-DMF中Mg(Ⅱ)的扩散系数和传递系数为2.95×10-6 cm2•s-1和0.11;CoCl2-LiClO4-DMF中Co(Ⅱ)的扩散系数和传递系数为1.34×10-5 cm2•s-1和0.24;Y(NO3)3-LiClO4-DMF中Y(Ⅲ)的扩散系数和传递系数为1.68×10-5 cm2•s-1和0.10.在铜电极上于-1.50~-3.00 V(vs SCE)下恒电位电沉积,得到黑色、光滑致密、粘附性好的Y-Mg-Co合金膜,其中Y含量为3.88%~58.66%;Mg含量为4.51%~17.52%.  相似文献   

4.
在二甲亚砜中La—Fe合金膜电化学制备的研究   总被引:1,自引:0,他引:1  
研究了二甲亚砜 (DMSO)中La3 和Fe2 在Pt ,Cu和Ni电极上的电化学行为。Fe2 在Pt电极上一步不可逆还原为Fe ,La3 在Pt电极上表现为准可逆电极过程。在 2 98K时 ,利用循环伏安法测定了 0 0 1mol·L- 1 FeCl2 0 1mol·L- 1 LiCl DMSO溶液中Fe2 的扩散系数、传递系数分别为 2 5 4× 10 - 6 cm2 ·s- 1 和 0 2 4;利用计时电流法测定了 0 0 1mol·L- 1 LaCl3 0 1mol·L- 1 LiCl DMSO溶液中La3 的扩散系数为 3 10×10 - 6 cm2 ·s- 1 。在铜电极上于 -1 75 0~ -2 45 0V (vs .SCE)下恒电位电解 ,可获得La含量达 2 2 7%~ 3 7 1%的La Fe合金膜 ;应用脉冲电解技术于 2~ 6mA·cm- 2 也可获得La Fe合金膜。这些合金膜是均匀的 ,粘附性好并有金属光泽  相似文献   

5.
运用电化学循环伏安和程序电位阶跃方法研究了乙二醇在Pt(111)单晶电极上的解离吸附过程.动力学研究的定量结果指出,乙二醇解离吸附反应的平均速率随电极电位变化呈火山型分布,其最大值在0.10 V(vs SCE)附近.测得在含2×10-3 mol•L-1乙二醇的溶液中,最大初始解离速率vi为4.35×10-12 mol•cm--2•s-1.  相似文献   

6.
烟酸对酸性硫酸盐体系铜电沉积的影响   总被引:2,自引:0,他引:2  
对溶液A: 0.8 mol•L-1硫酸铜,0.6 mol•L-1硫酸,5.0×10-5 mol•L-1氯离子,1.0×10-4 mol•L-1聚乙二醇的溶液,溶液B:在溶液A中加入2.0×10-2 mol•L-1烟酸,pH为0.5,运用循环伏安和计时安培法研究玻碳电极上铜的电沉积行为.结果表明,铜的电沉积过程经历了晶核形成过程,其电结晶按瞬时成核和三维生长方式进行.烟酸的加入对铜的电沉积具有阻化作用,但不改变铜的电结晶机理.沉积层的X射线衍射表明Cu为面心立方结构,在烟酸存在下沉积层出现(220)高择优取向,这可能是烟酸在Cu(220)晶面上发生强烈吸附作用的结果.  相似文献   

7.
电容测量研究铬表面氧化膜的半导体性能   总被引:1,自引:0,他引:1  
利用电容测量技术,基于Mott-Sckottky分析,研究了在0.5 mol•L-1 H2SO4溶液中铬表面氧化膜的半导体性质,以及膜形成条件的影响.结果表明,铬在钝化电位区内所形成的表面氧化膜具有p-型半导体特性,膜的厚度约(1.2±0.3) nm.膜的阻抗响应表现出低频弥散行为,可以用介电弛豫普适定律来描述.膜的掺杂浓度NA随成膜电位及极化时间的延长而增大,溶液pH值则通过改变膜的表面电荷而影响膜的平带电位EFB.  相似文献   

8.
采用循环伏安法、线性扫描伏安法、常规脉冲伏安法和恒电位电解法等电化学手段, 详细研究了利培酮在pH 7.07~10.32 B-R缓冲溶液和0.2 mol•L-1 NaOH溶液中的电化学行为. 研究表明: 在pH 7.07~10.07 B-R缓冲溶液中, 利培酮产生的P1波为催化氢波. 在pH=10.32 B-R缓冲溶液中, 利培酮可以产生P2和P3两个波. 其中, P2波为不可逆的单电子还原波, P3波可以分裂成两个波P3a和P3b. P3a波为P2波的进一步单电子还原, 而P3b波则属于催化氢波. 在0.2 mol•L-1 NaOH溶液中, 利培酮产生的P4波是一个两电子的不可逆还原波. 另外, 根据P1波的一阶导数峰电流与利培酮浓度在1.6×10-5~2.0×10-6 mol•L-1 (r=0.9950)间的线性关系, 建立了利培酮片剂中利培酮含量的测定新方法. 新方法的检出限为1.0×10-6 mol•L-1, 回收率在105%~102%之间, 相对标准偏差为0.84%.  相似文献   

9.
合成了两种稀土高氯酸盐与L 脯氨酸配合物的晶体.经热重、差热、化学分析及对比有关文献,知其组成是[Pr2(L Pro)6(H2O)4](ClO4)6和[Er2(L Pro)6(H2O)4](ClO4)6,质量分数为99.24%和98.20%.选用RE(NO3)3•6H2O(RE=Pr,Er)、L Pro、NaClO4•H2O和NaNO3作辅助物,使用具有恒温环境的反应热量计,以2 mol•L-1 HCl作溶剂,分别测定了[2RE(NO3)3•6H2O+6L Pro+6NaClO4•H2O]和{[RE2(L PrO)6(H2O)4](ClO4)6+6NaNO3}在298.15 K时的溶解热.设计一热化学循环求得化学反应的反应焓ΔrHm分别是:63.904 kJ•mol-1和91.017 kJ•mol-1,经计算得配合物[RE2(L Pro)6(H2O)4](ClO4)6(s)在298.15 K时的标准生成焓ΔfHm(298.15 K)分别是-6 594.78 kJ•mol-1和-6 532.87 kJ•mol-1.  相似文献   

10.
磷钼钨杂多酸-L-半胱氨酸自组装膜电极的电化学性质   总被引:3,自引:0,他引:3  
王升富  杜丹  邹其超 《物理化学学报》2001,17(12):1102-1106
磷钼钨杂多阴离子通过分子间静电作用吸附在L-半胱氨酸自组装单分子膜修饰金电极表面,制备了磷钼钨杂多酸-L-半胱氨酸自组装超分子膜电极,探讨了成膜条件.采用循环伏安(CV)、计时库仑(CC)、水平衰减全反射傅立叶变换红外光谱(ATR-FTIR)表征了膜的组成及电化学性质.实验发现,该膜电极在1.0 mol•L-1H2SO4溶液中,于0.8~-0.2 V(υs SCE)间CV扫描出现3对稳定、可逆的氧化还原峰,计时库仑法计算了薄膜内的电子传递系数D为 2.64×10-7 cm2•s-1,初步探讨了膜电极的氧化还原性能.  相似文献   

11.
IntroductionSemimetallic bismuth is a material exhibitinginteresting magnetoresistance( MR) characteristicand finite- size effect,whose electronic propertiesare fundamentally different from those of commonmetals due to the complex and highly anisotropicFermi surface[1] .Recently,Bi has attracted ourmuch attention for its applications involving fieldand current sensing due to its extremely high mag-netoresistance( MR) relative to those reported forGMR and CMR materials.The large MR of Bia…  相似文献   

12.
用化学共沉淀法和物理方法制得Ni和Ru的氢氧化物共沉淀物,经热处理得到NiO/RuO2复合氧化物. XRD分析表明, RuO2被大量的NiO颗粒所包覆.电化学测试表明, NiO电极材料中引入部分RuO2可以提高比能量和比电容,拓宽工作电位窗一倍以上.掺入10% RuO2的NiO电极比能量达14.2 W•h•kg-1,比电容达210 F•g-1,而NiO电极比能量和比电容只有2.6 W•h•kg-1和118 F•g-1. 200周循环后,化学复合RuO2电极比电容保持在95%以上,物理复合电极仅保持在79%左右.  相似文献   

13.
电沉积三维多孔Pt/SnO2薄膜及其对甲醇的电催化氧化   总被引:1,自引:0,他引:1  
周颖华  岑树琼  李则林  牛振江 《化学学报》2007,65(23):2669-2674
在高电流密度下以阴极析出的氢气泡为“模板”电沉积三维多孔Sn薄膜, 经在200 ℃ 2 h和400 ℃ 2 h热处理氧化后电沉积金属Pt, 制得三维多孔的Pt/SnO2 (3D-Pt/SnO2)薄膜. 通过扫描电镜(SEM)和X射线衍射(XRD)分析了薄膜的形貌和结构. 结果显示Pt主要沉积在SnO2枝晶上, 形成Ptshell/SnO2core结构的枝晶. 在0.5 mol•dm-3 H2SO4+1.0 mol•dm-3 CH3OH溶液中的循环伏安结果表明, 3D-Pt/SnO2薄膜电极在酸性溶液中电催化氧化甲醇的性能优于电沉积的纯铂电极, 而且具有较高的稳定性.  相似文献   

14.
合成并表征了阳离子Gemini表面活性剂乙二亚甲基-α,β-双(十六烷基二甲基溴化铵)(16-2-16).用表面张力和粘度法确定了其cmc,通过表面张力曲线计算了16-2-16的表面吸附量、吸附分子面积和胶束形成自由能;并用悬滴法测定了16-2-16在空气表面和十二烷界面的动态表(界)面张力.用改进的Washburn方法测定16-2-16水溶液在硅胶粉末表面的接触角,并进一步讨论了16-2-16在硅胶表面的吸附引起的润湿性变化. 探讨润湿性变化与动态张力的关系. 将16-2-16 与溴代十六烷基三甲胺(CTAB)做比较:两种物质在含油硅胶粉末上引起的最高脱油率(实验室模拟驱油)均发生在cmc附近,但16-2-16的最高脱油率是68%, CTAB的是63%.而所用CTAB的cmc比16-2-16的约大50倍,也就是说用16-2-16可以获得更高的脱油率.  相似文献   

15.
化学镀镍-高磷合金晶化行为的现场XRD研究   总被引:12,自引:0,他引:12  
从柠檬酸-酒石酸-乳酸-EDTA混合体系中得到含P 12%(质量比)的化学镀高磷Ni-P合金,其差热曲线显示,在350和420 ℃出现两个放热过程.现场XRD分析结果显示,镀层在300 ℃以下保持非晶态结构,在320 ℃之后开始晶化,首先析出介稳的Ni5P2和Ni12P5相,在360 ℃后开始有稳定的Ni3P和Ni相的衍射峰出现, 400 ℃以上只有Ni3P和Ni相. 325 ℃恒温时,镀层在4 min内保持非晶态的衍射特征,随即析出Ni5P2和Ni12P5相, 并在2 h内基本保持不变. 350 ℃恒温时,析出的Ni5P2和Ni12P5介稳相只存在40 min.实验结果表明, DTA曲线上350 ℃的放热峰不仅有非晶相转变为介稳相的过程,也包含部分介稳相转化为稳定相的过程.  相似文献   

16.
聚阿魏酸修饰电极的电化学特性及电催化性能   总被引:4,自引:0,他引:4  
研究了阿魏酸在玻碳电极表面电聚合成膜的方法和条件,测量了应用电化学方法制备不同厚度的阿魏酸修饰电极的循环伏安行为及其它电化学性质.对厚度为0.5 μm的阿魏酸膜,测得的电子转移系数为0.49,表观电极反应速率常数(ks)为6.56 s-1.扩散系数DR为7.9×108 cm2•s-1,Do为4.48×108 cm2•s-1.该修饰电极对烟酰胺腺嘌呤二核苷酸(NADH)氧化具有很好的催化作用.NADH浓度在0.01~5.0 mmol•dm-3范围内与峰电流呈现良好的线性关系.  相似文献   

17.
制备了高氯酸锂与乙酰胺和乙烯脲形成的二元低温熔盐电解质,采用差示扫描量热法、交流阻抗法和循环伏安法分别对其热学、电化学性质进行了研究.测试结果表明,高氯酸锂-乙酰胺体系具有较好的热稳定性和高的电导性,配比n(LiClO4):n(Acetamide)=1.0:5.5的样品室温(25 ℃)电导率为1.25×10-3 S•cm-1,80 ℃电导率为1.15×10-2 S•cm-1;其电化学稳定电位窗近3 V左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号