首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
An analysis is performed to study the flow and heat transfer characteristics of laminar mixed convection boundary layer flows from inclined (including horizontal and vertical) surfaces embedded in a saturated porous medium with constant aiding external flows and uniform surface temperature. Both the streamwise and normal components of the buoyancy forces are retained in the momentum equations. Nondimensionalization of the boundary layer equations results in the following three governing parameter: (1)Gr/Re, the ratio of the Grashof number to the Reynolds number; (2)Pe x =Re x Pr, the Peclet number; (3) φ, the angle of inclination from the horizontal. The resulting nonsimilar equations are solved by an efficient implicit finite-difference scheme. Numerical results are presented for flows with different values ofGr/Re in the range of 0 to 50, over a wide range of the Peclet numbersPe x, and various values of φ ranging from 0 to 90 degrees. It is found that the local surface heat transfer rate increases with increasing the local Peclet number. In addition, as the plate is tilted from the horizontal to the vertical orientation, the local Nusselt number increases for a given Peclet number and the effect of the buoyancy force on the surface heat transfer rate increases.  相似文献   

2.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2006,41(5):509-518
An analysis is made for the steady mixed convection boundary layer flow near the two-dimensional stagnation-point flow of an incompressible viscous fluid over a stretching vertical sheet in its own plane. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation-point. Two equal and opposite forces are impulsively applied along the x-axis so that the wall is stretched, keeping the origin fixed in a viscous fluid of constant ambient temperature. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a very efficient numerical scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. It is observed that, for assisting flow, both the skin friction coefficient and the local Nusselt number increase as the buoyancy parameter increases, while only the local Nusselt number increases but the skin friction coefficient decreases as the Prandtl number increases. For opposing flow, both the skin friction coefficient and the local Nusselt number decrease as the buoyancy parameter increases, but both increase as Pr increases. Comparison with known results is excellent.  相似文献   

3.
A mixed convection flow of an optically dense viscous incompressible fluid along a horizontal circular cylinder has been studied with the effect of radiation when the surface temperature is uniform. Using appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity form. Solutions of the governing equations are obtained employing the implicit finite difference method. Effects of varying the pertinent parameters, such as, the Planck number, R w the surface temperature parameter, θw and the buoyancy parameter, α on the local skin-friction and local heat transfer coefficients are shown graphically as well as in tabular form against the curvature parameter ξ, while taking Prandtl number Pr = 1.0. It is found that an increase of R dw or α leads to increases in the values of the local skin-friction and the local rate of heat transfer coefficients. At the stagnation point asymptotic solutions for large value of α are also obtained and the effect of the other pertinent parameters on the formation of the flow separation are studied. Received on 28 July 1998  相似文献   

4.
The radiation effect on the mixed convection flow of an optically dense viscous fluid adjacent to an isothermal cone embedded in a saturated porous medium with Rosseland diffusion approximation is numerically investigated. The entire regime of the mixed convection is included, as the mixed convection parameter of χ varies from 0 (pure free convection) to 1 (pure forced convection). The transformed nonlinear system of equations is solved by using an implicit finite difference method. Numerical results are given for the dimensionless temperature profiles and the local Nusselt number for various values of the mixed convection parameter χ, the cone angle parameter m, the radiation-conduction parameter R d and the surface temperature parameter H. The local Nusselt number decreases initially, reaches a minimum in the intermediate value of χ and then increases gradually. It is apparent that increasing the cone angle parameter m enhances the local Nusselt number. The local Nusselt number is significantly increased for the large values of the radiation-conduction parameter R d and the surface temperature parameter H, i.e., radiation effect becomes pronounced. Received on 25 October 1999  相似文献   

5.
A numerical solution for the transient natural convection flow over a vertical cylinder under the combined buoyancy effect of heat and mass transfer is presented. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt number and Sherwood number are shown graphically. It is observed that time taken to reach steady state increases with Schmidt number and decreases as combined buoyancy ratio parameter N increases. Stability and convergence of the finite difference scheme are established. Received on 8 July 1997  相似文献   

6.
A free convertion flow of an optically dense viscous incompressible fluid along a vertical thin circular cylinder has been studied with effect of radiation when the surface temperature is uniform. With appropriate transformations, the boundary layer equations governing the flow are reduced to local nonsimilarity equations. Solutions of the governing equations are obtained employing the implicit finite difference methods together with Keller box scheme as well the local nonsimilarity method with second order truncation for all ξ (nondimensional transverse curvature parameter) in the interval [0,10] and are expressed in terms of local Nusselt number for a range of values of the pertinent parameters. Effects of pertinent parameters, such as, the radiation parameter, R d , the surface temperature parameter, θ w , taking Prandtl number, Pr, equals 0.7 on the velocity and temperature field are also presented graphically. From the solution it is seen that increase of R d , or θ w leads to increase in the local rate of heat transfer coefficients. Results obtained by both the methods are obtained in excellent agreement between each other upto ξ = 10.  相似文献   

7.
The analysis is carried out for buoyancy-induced boundary layer flow adjacent to an inclined heated surface in a saturated porous medium incorporating the variation of permeability and thermal conductivity due to paking particles with non-uniform temperature. The surface temperature is assumed to vary as a power function of the axial coordinate measured from the leading edge of the surface. Both the streamwise and normal component of the buoyancy force are retained in the momentum equations. Numerical solutions are obtained in the cases of uniform and nonuniform permeability and various values of the inclination parameter ξ (x) = (Ra x cos ϕ)1/3 tan ϕ by using finite difference method. The problem is solved using nonsimilarity solutions for the case of variable wall temperature. Results for the details of the velocity and temperature fields as well as local Nusselt number have been presented.  相似文献   

8.
A boundary layer analysis is used to investigate the heat and mass transfer characteristics of mixed convection about a vertical flat plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion. The plate is maintained at prescribed surface temperature/concentration (PST/PSC) or prescribed heat/mass flux (PHF/PMF). The nonsimilar governing equations are obtained by using a suitable transformation and solved by Keller box method. Numerical results for the local heat transfer rate and the local mass transfer rate are presented for various parameters. The local heat and mass transfer rates increase with increasing n and m and buoyancy parameter ξ. When buoyancy parameter ξ is very small (large) the value of local Nusselt and the local Sherwood number correspond with the pure forced (free) convection, respectively. Increasing buoyancy ratio N (or N *) increases the local heat and mass transfer rates. It is apparent that Lewis number has a pronounced effect on the local mass transfer rate than it does on the local heat transfer rate. Furthermore, increasing Lewis number decreases (increases) the local heat (mass) transfer rate. Received on 8 December 1997  相似文献   

9.
The unsteady mixed convection of the Al2O3-Cu/H2O hybrid nanofluid flow near the stagnation point past a vertical plate is analyzed. The bvp4c technique is used to solve the resulting ordinary differential equations. The combined effects of the velocity and thermal slip are addressed. The effects of different relevant physical parameters are studied numerically. The results show that the heat transfer rate is reduced when the volume fraction of the nanoparticles increases, while the unsteadiness...  相似文献   

10.
The paper presents a study of the laminar mixed convection adjacent to vertical continuously stretching sheets, taking into account the effects of variable viscosity and variable thermal diffusivity. The similarity solutions are reported for isothermal sheet moving with a velocity of the form uw=Bx0.5 and a continuous linearly stretching sheet with a linear surface temperature distribution. The equations of conservation of mass, momentum and energy, which govern the flow and heat transfer, are solved numerically by using the shooting method. The numerical results obtained for the flow and heat transfer characteristics reveal many interesting behaviors. The numerical results show that, variable viscosity, variable thermal diffusivity, the velocity exponent parameter, the temperature exponent parameter and the buoyancy force parameter have significant influences on the velocity and temperature profiles, shear stress and Nusselt number in two cases air and water.  相似文献   

11.
M. Kumari  G. Nath 《Meccanica》2014,49(5):1263-1274
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.  相似文献   

12.
The effects of suction/injection on steady laminar mixed convection boundary layer flow over a permeable horizontal surface of a wedge in a viscous and incompressible fluid is considered in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction/injection parameter f 0, the constant exponent m of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using an implicit finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the local Nusselt number, and the velocity and temperature profiles are obtained for various values of parameters considered. Dual solutions are found to exist for the case of opposing flow.  相似文献   

13.
A similarity solution for a steady laminar mixed convection boundary layer flow of a nanofluid near the stagnation point on a vertical permeable plate with a magnetic field and a buoyancy force is obtained by solving a system of nonlinear ordinary differential equations. These equations are solved analytically by using a new kind of a powerful analytic technique for nonlinear problems, namely, the homotopy analysis method (HAM). Three different types of nanoparticles, namely, copper (Cu), alumina (Al2O3), and titanium oxide (TiO2), with water as the base fluid are considered. The influence of the volume fraction of nanoparticles, permeability parameter, magnetic parameter, and mixed convection parameter on the surface shear stress and surface heat transfer, as well as on the velocity and temperature profiles, is considered. It is observed that the skin friction coefficient and the local Nusselt number increase with the nanoparticle volume fraction for all types of nanoparticles considered in this study. The greatest values of the skin friction coefficient and the local Nusselt number are obtained for Cu nanoparticles.  相似文献   

14.
The analysis of laminar mixed convection in boundary layers adjacent to a vertical, continuously stretching sheet has been presented. The velocity and temperature of the sheet were assumed to vary in a power-law form, that is, u w (x)=Bx m and T w (x)−T =Ax n . In the presence of buoyancy force effects, similarity solutions were reported for the following two cases: (a) n=0 and m=0.5, which corresponds to an isothermal sheet moving with a velocity of the form u w =Bx 0.5 and (b) n=1 and m=1, which corresponds to a continuous, linearly stretching sheet with a linear surface temperature distribution, i.e. T w T =Ax. Formulation of the present problem shows that the heat transfer characteristics depends on four governing parameters, namely, the velocity exponent parameter m, the temperature exponent parameter n, the buoyancy force parameter G *, and Prandtl number of the fluid. Numerical solutions were generated from a finite difference method. Results for the local Nusselt number, the local friction coefficient, and temperature profiles are presented for different governing parameters. Effects of buoyancy force and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Received on 17 July 1997  相似文献   

15.
An analysis is made for the steady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching vertical sheet in its own plane. The stretching velocity, the surface temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the magnetic parameter M, the velocity exponent parameter m, the temperature exponent parameter n and the buoyancy parameter λ, while the Prandtl number Pr is fixed, namely Pr = 1, using a finite difference scheme known as the Keller-box method. Similarity solutions are obtained in the presence of the buoyancy force if n = 2m−1. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M increases for fixed λ and m. For m = 0.2 (i.e. n = −0.6), although the sheet and the fluid are at different temperatures, there is no local heat transfer at the surface of the sheet except at the singular point of the origin (fixed point).  相似文献   

16.
The boundary layer flow over a uniformly moving vertical surface with suction or injection is studied when the buoyancy forces assist or oppose the flow. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity boundary conditions. The effect is of various governing parameters, such as Prandtl number Pr, temperature exponent n, injection parameter d, and the mixed convection parameter λ=Gr/Re2, which determine the velocity and temperature distributions and the heat transfer coefficient, are studied. The heat transfer coefficient increases as λ assisting the flow for all d at Pr=0.72 however, for n=−1 it decreases sharply with λ. On the other hand, increasing λ has no effect on heat transfer coefficient for Pr=10 at n=0, and 1 for almost all values of d studied. However, for n=−1 it has similar effect as for Pr=0.72. It is also found that Nusselt number increases as n increases for fixed λ and d. Received on 26 March 1997  相似文献   

17.
 An numerical study of the flow and heat transfer characteristics associated with a heated, continuously stretching surface being cooled by a mixed convection flow has been carried out. The relevant heat transfer mechanisms are of interest in a wide variety of practical applications, such as hot rolling, continuous casting, extrusion, and drawing. The surface velocity of the continuously stretching sheet was assumed to vary according to a power-law form, that is, u w (x)=Cx p . Two conditions of surface heating were considered, a variable wall temperature (VWT) in the form T w (x)−T =Ax n and a variable surface heat flux (VHF) in the form q w (x)=Bx m . The governing differential equations are transformed by introducing proper nonsimilarity variables and solved numerically using a procedure based on finite difference approximations. Results for the local Nusselt number and the local friction coefficient are obtained for a wide range of governing parameters, such as the surface velocity parameter p, the wall temperature exponent n, the surface heat flux exponent m, the buoyancy force parameters (ξ for the VWT case and χ for the VHF case), and Prandtl number of the fluid. It is found that the local Nusselt number is increased with increasing the velocity exponent parameter p for the VWT case, while the opposite trend is observed for the VHF case. The local friction coefficient is increased for a decelerated stretching surface, while it is decreased for an accelerated stretching surface. Also, appreciable effects of the buoyancy force on the local Nusselt number and the local friction coefficient are observed for both VWT and VHF cases, as expected. Received on 11 January 1999  相似文献   

18.
Two dimensional unsteady Navier-Stokes and the energy equations are solved using finite element method for the case of flow past five row deep in-line bundle of circular cylinders with pitch to diameter ratios (PDR) of 1.5 and 2.0. Numerical solutions of governing equations have been obtained using Euler's explicit algorithm. Analysis have been made for Reynolds number of 100 and Prandtl number of 0.71. The effect of Richardson number (Ri=Gr/Re 2) on the flow and heat transfer have been investigated forRi=?1.0, ?0.5, 0.0, +0.5 and +1.0. Streamlines, isovorticity lines, pressure and temperature contours, local and average Nusselt numbers, pressure and shear stress distribution around the cylinders are presented. Results obtained for forced convection (Ri=0.0) agree well with the available experimental and numerical results. There is considerable effect of buoyancy over tube bundles both in buoyancy aiding and opposing flows.  相似文献   

19.
A boundary layer analysis is performed to study the influence of thermal radiation and buoyancy force on two-dimensional magnetohydrodynamic flow of an incompressible viscous and electrically conducting fluid over a vertical stretching sheet embedded in a porous medium in the presence of inertia effect. The governing system of partial differential equations is first transformed into system of ordinary differential equations using self-similarity transformation. A special form for magnetic field is chosen to obtain the similarity solution. The transformed boundary layer equations are solved numerically for some important values of the physical parameters. The present results are compared with the previously published papers and the results are found to be in excellent agreement. The important features of the flow, heat and mass transfer characteristics for different values of thermal radiation, porous permeability, magnetic field and buoyancy parameters are analyzed and discussed. The effects of various physical parameters on the skin friction coefficient, local Nusselt number and local Sherwood number are also presented. It is found that increase in the value of thermal radiation parameter R 1 increases the skin friction coefficient and Sherwood number whereas reverse trend is seen for the local Nusselt number.  相似文献   

20.
The steady laminar magnetohydrodynamic mixed convection boundary layer flow of a nanofluid near the stagnation-point on a vertical permeable plate with prescribed external flow and surface temperature is investigated in this study. Here, both assisting and opposing flows are considered and studied. Using appropriate similarity variables, the governing equations are transformed into nonlinear ordinary differential equations in the dimensionless stream function, which is solved numerically using the Runge–Kutta scheme coupled with a conventional shooting procedure. Three different types of nanoparticles, namely copper Cu, alumina Al2O3 and titania TiO2 with water as the base fluid are considered. Numerical results are obtained for the skin-friction coefficient and Nusselt number as well as for the velocity and temperature profiles for some values of the governing parameters, namely, the volume fraction of nanoparticles ?, permeability parameter f o , magnetic parameter M and mixed convection parameter λ. It is found that dual solutions exist for both assisting and opposing flows, and the range of the mixed convection parameter for which the solution exists, increases with suction, magnetic field and volume fraction of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号