首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于当地笛卡尔架构的无网格方法   总被引:1,自引:0,他引:1  
提出了一种新的无网格方法,该方法是自动地在每一样点建立一个局部笛卡尔架构并选取相应的邻近点,然后运用全导数公式构造该样点的所有导数,它不需要任何网格单元,所以是彻底的无网格方法.数值算例表明,该方法具有很高的精度.  相似文献   

2.
Goal of this paper is to suitably combine a model with an anisotropic mesh adaptation for the numerical simulation of nonlinear advection-diffusion-reaction systems and incompressible flows in ecological and environmental applications. Using the reduced-basis method terminology, the proposed approach leads to a noticeable computational saving of the online phase with respect to the resolution of the reference model on nonadapted grids. The search of a suitable adapted model/mesh pair is to be meant, instead, in an offline fashion.  相似文献   

3.
We present an efficient mesh adaptation algorithm that can be successfully applied to numerical solutions of a wide range of 2D problems of physics and engineering described by partial differential equations. We are interested in the numerical solution of a general boundary value problem discretized on triangular grids. We formulate a necessary condition for properties of the triangulation on which the discretization error is below the prescribed tolerance and control this necessary condition by the interpolation error. For a sufficiently smooth function, we recall the strategy how to construct the mesh on which the interpolation error is below the prescribed tolerance. Solving the boundary value problem we apply this strategy to the smoothed approximate solution. The novelty of the method lies in the smoothing procedure that, followed by the anisotropic mesh adaptation (AMA) algorithm, leads to the significant improvement of numerical results. We apply AMA to the numerical solution of an elliptic equation where the exact solution is known and demonstrate practical aspects of the adaptation procedure: how to control the ratio between the longest and the shortest edge of the triangulation and how to control the transition of the coarsest part of the mesh to the finest one if the two length scales of all the triangles are clearly different. An example of the use of AMA for the physically relevant numerical simulation of a geometrically challenging industrial problem (inviscid transonic flow around NACA0012 profile) is presented. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

4.
求解流固耦合问题的一种四步分裂有限元算法   总被引:1,自引:1,他引:0  
基于arbitrary Lagrangian Eulerian (ALE) 有限元方法,发展了一种求解流固耦合问题的弱耦合算法.将半隐式四步分裂有限元格式推广至求解ALE描述下的Navier-Stokes(N-S)方程,并在动量方程中引入迎风流线(streamline upwind/Petrov-Galerkin, SUPG)稳定项以消除对流引发的速度场数值振荡;采用Newmark-β法对结构方程进行时间离散;运用经典的Galerkin有限元法求解修正的Laplace方程以实现网格更新,每个计算步施加网格总变形量防止结构长时间、大位移运动时的网格质量恶化.运用上述算法对弹性支撑刚性圆柱体的流致振动问题进行了数值模拟,计算结果与已有结果相吻合,初步验证了该算法的正确性和有效性.  相似文献   

5.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
An adaptive mesh method combined with the optimality criteria algorithm is applied to optimal shape design problems of fluid dynamics. The shape sensitivity analysis of the cost functional is derived. The optimization problem is solved by a simple but robust optimality criteria algorithm, and an automatic local adaptive mesh refinement method is proposed. The mesh adaptation, with an indicator based on the material distribution information, is itself shown as a shape or topology optimization problem. Taking advantages of this algorithm, the optimal shape design problem concerning fluid flow can be solved with higher resolution of the interface and a minimum of additional expense. Details on the optimization procedure are provided. Numerical results for two benchmark topology optimization problems are provided and compared with those obtained by other methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Data transfer from one mesh to another may be necessary in a number of situations including spatial adaptation, remeshing, arbitrary Lagrangian-Eulerian (ALE), and multiphysics simulation. Data transfer has the potential to introduce error into a simulation; the magnitude and impact of which depends on the application, transfer scenario, and the algorithm used to perform the data transfer. During a transient simulation, data transfer may occur many times, with the potential of error accumulation at each transfer. This paper examines data transfer error and its impact on a set of simple multiphysics problems. Data transfer error is examined using analytical functions to compare schemes based on interpolation, area-weighted averaging, and L2 minimization. An example error analysis is performed to illustrate data transfer error and behavior for a simple problem. Data transfer error is also investigated for a one-dimensional time-dependent system of partial differential equations. This study concludes that data transfer error can be significant in coupled multiphysics systems. These numerical experiments suggest that error is a function of data transfer scheme, and characteristics of the field data and mesh. If there are significant differences in the meshes in a multiple mesh simulation, this study suggests that data transfer may lead to error and instability if care is not taken. Further, this work motivates that data transfer error should be included in the estimation of numerical error when data transfer is employed in a simulation.  相似文献   

8.
Fluid motion in many applications occurs at higher Reynolds numbers. In these applications dealing with turbulent flow is thus inescapable. One promising approach to the simulation of the motion of the large structures in turbulent flow is large eddy simulation in which equations describing the motion of local spatial averages of the fluid velocity are solved numerically. This report considers “numerical errors” in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 689–710, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10027.  相似文献   

9.
We present a comparative numerical study for three functionals used for variational mesh adaptation. One of them is a generalization of Winslow's variable diffusion functional while the others are based on equidistribution and alignment. These functionals are known to have nice theoretical properties and work well for most mesh adaptation problems either as a stand-alone variational method or combined within the moving mesh framework. Their performance is investigated numerically in terms of equidistribution and alignment mesh quality measures. Numerical results in 2D and 3D are presented.  相似文献   

10.
The application of some recently proposed algebraic multilevel methods for the solution of two-dimensional finite element problems on nonuniform meshes is studied. The locally refined meshes are created by the newest vertex mesh refinement method. After the introduction of this refinement technique it is shown that, by combining levels of refinement, a preconditioner of optimal order can be constructed for the case of local refinement along a line. Its relative condition number is accurately estimated. Numerical tests demonstrating the performance of the proposed preconditioners will be reported in a forthcoming paper.  相似文献   

11.
一种h型自适应有限单元   总被引:2,自引:0,他引:2  
h型自适应有限单元在网格局部细划时.会产生非常规节点,从而破坏了一般意义上的单元连续性假定.本文利用参照节点对非常规单元进行坐标和位移插值.为保证单元之间坐标和位移的连续性,本文提出了一组修正的形函数,常用的形函数是它的一个特例.本方法应用于有限元程序时,除形函数外无须做任何改动.算例表明水文的方法具有方法简单、精度高、自由度少、计算量小等优点.  相似文献   

12.
Local mesh refinement is one of the key steps in the implementations of adaptive finite element methods. This paper presents a parallel algorithm for distributed memory parallel computers for adaptive local refinement of tetrahedral meshes using bisection. This algorithm is used in PHG, Parallel Hierarchical Grid (http: //lsec. cc. ac. cn/phg/J, a toolbox under active development for parallel adaptive finite element solutions of partial differential equations. The algorithm proposed is characterized by allowing simultaneous refinement of submeshes to arbitrary levels before synchronization between submeshes and without the need of a central coordinator process for managing new vertices. Using the concept of canonical refinement, a simple proof of the independence of the resulting mesh on the mesh partitioning is given, which is useful in better understanding the behaviour of the bisectioning refinement procedure.AMS subject classifications: 65Y05, 65N50  相似文献   

13.
Subdivision schemes provide the most efficient and effective way to design and render smooth spatial curves. It is well known that among the most popular schemes are the de Rham–Chaikin and Lane–Riesenfeld subdivision schemes, that can be readily formulated by direct applications of the two-scale (or refinement) sequences of the quadratic and cubic cardinal B-splines, respectively. In more recent works, semi-orthogonal and bi-orthogonal spline-wavelets have been integrated to curve subdivision schemes to add such powerful tools as automatic level-of-detail control algorithm for curve editing and rendering, and efficient simulation processing scheme for global graphic illumination and animation. The objective of this paper is to introduce and construct a family of spline-wavelets to overcome the limitations of semi-orthogonal and bi-orthogonal spline-wavelets for these and other applications, by adding flexibility to the enhancement of desirable characters without changing the sweep of the subdivision spline curve, by providing the shortest lowpass and highpass filter pairs without decreasing the discrete vanishing moments, and by assuring robust stability.  相似文献   

14.
Automatic control of mesh movement is mandatory in many fluid flow and fluid-solid interaction problems. This paper presents a new strategy, called reduced domain strategy (RDS), which enhances the efficiency of node connectivity-based mesh movement methods and moves the unstructured grid locally and effectively. The strategy dramatically reduces the grid computations by dividing the unstructured grid into two active and inactive zones. After any local boundary movement, the grid movement is performed only within the active zone. To enhance the efficiency of our strategy, we also develop an automatic mesh partitioning scheme. This scheme benefits from a new quasi-structured mesh data ordering, which determines the boundary of active zone in the original unstructured grid very easily. Indeed, the new partitioning scheme eliminates the need for sequential reordering of the original unstructured grid data in different mesh movement applications. We choose the spring analogy method and apply our new strategy to perform local mesh movements in two boundary movement problems including a multi-element airfoil with moving slat or deforming main body section. We show that the RDS is robust and cost effective. It can be readily employed in different node connectivity-based mesh movement methods. Indeed, the RDS provides a flexible local grid deformation tool for moving grid applications.  相似文献   

15.
Since the accuracy of finite element solutions of partial differential equations is generally mesh dependent, especially when solutions have singularities and discontinuities, a proper mesh generation is often important and sometimes crucial for an accurate numerical approximation of such problems. In this paper, the mesh transformation method is applied to the boundary value problems of elliptic partial differential equations, and it is proved that the method leads to the optimal finite element solutions. AMS subject classification (2000) 73C50, 65K10, 65N12, 65N30  相似文献   

16.
1 引言 多孔介质中的核废料污染问题是环境保护领域的重要课题。对于不可压缩二维模型,它是地层中迁移型耦合抛物型方程组的初边值问题:  相似文献   

17.
We proposed absorbing interface conditions for the simulation of linear wave propagation on non-uniform meshes. Based on the superposition principle of second-order linear wave equations, we decompose the interface condition problem into two subproblems around the interface: for the first one the conventional artificial absorbing boundary conditions is applied, while for the second one, the local analytic solutions can be derived. The proposed interface conditions permit a two-way transmission of low-frequency waves across mesh interfaces which can be supported by both coarse and fine meshes, and perform a one-way absorption of high-frequency waves which can only be supported by fine meshes when they travel from fine mesh regions to coarse ones. Numerical examples are presented to illustrate the efficiency of the proposed absorbing interface conditions.  相似文献   

18.

A model of a strip of cardiac tissue consisting of a one-dimensional chain of cardiac units is derived in the form of a non-linear partial difference equation. Perturbation analysis is performed on this equation, and it is shown that regular perturbations are inadequate due to the appearance of secular terms. A singular perturbation procedure known as the method of multiple scales is shown to provide good agreement with numerical simulation except in the neighborhood of a singularity of the slow flow. The perturbation analysis is supplemented by a local numerical simulation near this singularity. The resulting analysis is shown to predict a "spatial bifurcation" phenomenon in which parts of the chain may be oscillating in period-2 motion while other parts may be oscillating in higher periodic motion or even chaotic motion.  相似文献   

19.
This article concerns a procedure to generate optimal adaptive grids for convection dominated problems in two spatial dimensions based on least-squares finite element approximations. The procedure extends a one dimensional equidistribution principle which minimizes the interpolation error in some norms. The idea is to select two directions which can reflect the physics of the problems and then apply the one dimensional equidistribution principle to the chosen directions. Model problems considered are the two dimensional convection-diffusion problems where boundary and interior layers occur. Numerical results of model problems illustrating the efficiency of the proposed scheme are presented. In addition, to avoid skewed mesh in the optimal grids generated by the algorithm, an unstructured local mesh smoothing will be considered in the least-squares approximations. Comparisons with the Gakerkin finite element method will also be provided.  相似文献   

20.
This article is concerned with the heat conduction problem in composite media. In practical applications, the composite materials often do not contact well and there exist gaps between the contacting materials. This leads to the thermal contact resistance effect which results in a discontinuity of the temperature across the interface. In this article, an unfitted finite element method is proposed to solve the problem. Different from the traditional finite element method, the proposed method uses structured meshes that allow the interface to cut through. To avoid integrating on curved domains and interfaces, the interface is approximated by a broken line/plane corresponding to the triangulation. In addition, a ghost‐penalty is added to recover the condition number of the stiffness matrix to with a hidden constant independent of the mesh‐interface geometry. A rigorous analysis is provided. Finally, numerical tests are presented to verify the theoretical findings. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 354–380, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号