首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady diffusioosmotic and electroosmotic flows of an electrolyte solution in the fibrous porous medium constructed by a homogeneous array of parallel charged circular cylinders are analyzed under conditions of small Peclet and Reynolds numbers. The imposed electrolyte concentration gradient or electric field is constant and can be oriented arbitrarily with respect to the axes of the cylinders. The thickness of the electric double layers surrounding the cylinders is assumed to be small relative to the radius of the cylinders and to the gap width between two neighboring cylinders, but the polarization effect of the diffuse ions in the double layers is incorporated. Through the use of a unit cell model, the appropriate equations of conservation of the electrochemical potential energies of ionic species and the fluid momentum are solved for each cell, in which a cylinder is envisaged to be surrounded by a coaxial shell of the fluid. Analytical expressions for the diffusioosmotic and electroosmotic velocities of the bulk electrolyte solution as functions of the porosity of the ordered array of cylinders are obtained in closed form for various cases. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made. In the limit of maximum porosity, these results can be interpreted as the diffusiophoretic and electrophoretic velocities of an isolated circular cylinder caused by the imposed electrolyte concentration gradient or electric field.  相似文献   

2.
The body-force-driven migration in a homogeneous suspension of polyelectrolyte molecules or charged flocs in an electrolyte solution is analyzed. The model used for the particle is a porous sphere in which the density of the hydrodynamic frictional segments, and therefore also that of the fixed charges, is constant. The effects of particle interactions are taken into account by employing a unit cell model. The overlap of the electric double layers of adjacent particles is allowed and the relaxation effect in the double layer surrounding each particle is considered. The electrokinetic equations which govern the electrostatic potential profile, the ionic concentration (or electrochemical potential energy) distributions, and the fluid velocity field inside and outside the porous particle in a unit cell are linearized by assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the density of the fixed charges as the small perturbation parameter. An analytical expression for the settling velocity of the charged porous sphere is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged porous spheres is also derived by using the requirement of zero net electric current. The dependence of the sedimentation velocity and potential of the suspension on the particle volume fraction and other properties of the particle-solution system is found to be quite complicated.  相似文献   

3.
We consider two identical, parallel, infinitely long solid cylinders at a given separation, lying flat on a plane oil/water interface and both immersed to the same extent in the oil and water phases. The part of the surface of each cylinder in contact with the aqueous phase is charged, forming an electric double layer in a symmetrical aqueous binary electrolyte. The electrical potential in the overlapping electric double layers in the aqueous phase satisfies the Poisson-Boltzmann equation. The potentials within the uncharged interiors of the solid cylinders and in the oil phase satisfy Laplace's equation. The equations for the three potentials are solved simultaneously using the finite element method with Galerkin weighted residuals. The double-layer interaction per unit length of the cylinders is then calculated. Of the numerical results obtained, three deserve special mention. First, a short-range double-layer repulsion, decaying exponentially with separation between the two cylinders, acts through the aqueous electrolyte medium, whereas in the case of an uncharged oil/water interface a weaker, but much longer-ranging, repulsive interaction acts through the oil medium. Second, reasonable estimates of the short-range interaction between cylinders in a planar interface can be obtained from the Derjaguin approximation for thin double layers. Third, in addition to the repulsive force between the cylinders parallel to the oil/water interface, a force normal to the interface acts on the cylinders in the direction of the aqueous electrolyte phase.  相似文献   

4.
The sedimentation in a homogeneous suspension of charged spherical particles with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model. Overlap of the double layers of adjacent particles is allowed, and the polarization effect in the double layer surrounding each particle is considered. The electrokinetic equations that govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved for a symmetrically charged electrolyte with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. An analytical expression for the settling velocity of the charged sphere in closed form is obtained from a balance among its gravitational, electrostatic, and hydrodynamic forces. A closed-form formula for the sedimentation potential in a suspension of identical charged spheres is also derived by using the requirement of zero net electric current. Our results demonstrate that the effects of overlapping double layers are quite significant, even for the case of thin double layers. Copyright 2000 Academic Press.  相似文献   

5.
The electrophoresis in a monodisperse suspension of dielectric spheres with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations, which govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell, are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the electrophoretic mobility of the colloidal sphere in closed form correct to O(zeta) are obtained. Based on the solution of the electrokinetic equations in a cell, a closed-form formula for the electric conductivity of the suspension up to O(zeta(2)) is derived from the average electric current density. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made for both the electrophoretic mobility and the electric conductivity. Copyright 2001 Academic Press.  相似文献   

6.
The diffusiophoresis in a homogeneous suspension of identical dielectric spheres with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a constant imposed concentration gradient is analytically studied. The effects of particle interactions (or particle volume fraction) are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the ionic concentration distributions, the electrostatic potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the diffusiophoretic velocity of the dielectric sphere in closed form correct to the second order of its surface charge density or zeta potential are obtained from a balance between its electrostatic and hydrodynamic forces. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made.  相似文献   

7.
The diffusiophoretic and electrophoretic motions of two colloidal spheres in the solution of a symmetrically charged electrolyte are analyzed using a method of reflections. The particles are oriented arbitrarily with respect to the electrolyte gradient or the electric field, and they are allowed to differ in radius and in zeta potential. The thickness of the electric double layers surrounding the particles is assumed to be small relative to the radius of each particle and to the gap width between the particles, but the effect of polarization of the mobile ions in the diffuse layer is taken into account. A slip velocity of fluid and normal fluxes of solute ions at the outer edge of the thin double layer are used as the boundary conditions for the fluid phase outside the double layers. The method of reflections is based on an analysis of the electrochemical potential and fluid velocity disturbances produced by a single dielectric sphere placed in an arbitrarily varying electrolyte gradient or electric field. The solution for two-sphere interactions is obtained in expansion form correct to O(r(12)(-7)), where r(12) is the distance between the particle centers. Our analytical results are found to be in good agreement with the available numerical solutions obtained using a boundary collocation method. On the basis of a model of statistical mechanics, the results of two-sphere interactions are used to analytically determine the first-order effect of the volume fraction of particles of each type on the mean diffusiophoretic and eletrophoretic velocities in a bounded suspension. For a suspension of identical spheres, the mean diffusiophoretic velocity can be decreased or increased as the volume fraction of the particles is increased, while the mean electrophoretic velocity is reduced with the increase in the particle concentration. Generally speaking, the particle interaction effects can be quite significant in typical situations. Copyright 2000 Academic Press.  相似文献   

8.
This article demonstrates that the neglect of nonlinear effects in the conventional counterion condensation theory for the double layer about a charged cylinder can be significant, especially for phenomena involving intramolecular or intermolecular interactions in dilute solutions. For concentrated solutions the Manning theory derives from a linearized superposition approximation for the potential, in contrast to the cylindrical-cell model, which explicitly treats interactions within an ordered array of parallel cylinders. A new theory which treats interactions explicitly while permitting disorder in two dimensions is presented, and predictions for the osmotic pressure are compared with those from the Manning and cylindrical-cell models.  相似文献   

9.
The problem solved in this study concerns steady-state flow of a viscous incompressible liquid at low Reynolds numbers in a model filter consisting of parallel cylinders with porous permeable shells. Both a separate row and lattices (square and hexagonal) of cylinders directed perpendicularly to the flow are considered. The flow field outside and inside the porous shell is found from the solutions to the Stokes and Brinkman equations. The drag force and the filtration efficiency are determined both as functions of the ratio between the cylinder diameter and the distance between the axes of adjacent cylinders and as functions of the thickness and permeability of the shells. The cell model is shown to be applicable for describing the flow field in a hexagonal lattice of cylinders with porous shells within a wide range of packing densities. Original Russian Text ? V.A. Kirsh, 2006, published in Kolloidnyi Zhurnal, 2006, Vol. 68, No. 2, pp. 198–206.  相似文献   

10.
An analytical study of diffusiophoresis in a homogeneous suspension of identical spherical charge-regulating particles with an arbitrary thickness of the electric double layers in a solution of a symmetrically charged electrolyte with a uniform prescribed concentration gradient is presented. The charge regulation due to association/dissociation reactions of ionogenic functional groups on the particle surface is approximated by a linearized regulation model, which specifies a linear relationship between the surface charge density and the surface potential. The effects of particle-particle electrohydrodynamic interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations that govern the electric potential profile, the ionic concentration distributions, and the fluid flow field in the electrolyte solution surrounding the particle in a unit cell are linearized assuming that the system is only slightly distorted from equilibrium. Using a regular perturbation method, these linearized equations are solved with the equilibrium surface charge density (or zeta potential) of the particle as the small perturbation parameter. Closed-form formulas for the diffusiophoretic velocity of the charge-regulating sphere correct to the second order of its surface charge density or zeta potential are derived. Our results indicate that the charge regulation effect on the diffusiophoretic mobility is quite sensitive to the boundary condition for the electric potential specified at the outer surface of the unit cell. For the limiting cases of a very dilute suspension and a very thin or very thick electric double layer, the particle velocity is independent of the charge regulation parameter.  相似文献   

11.
A nanochannel array based nanodevice can mimic the biological environments and thus unveil the natural properties, conformation and recognition information of biomolecules such as proteins and DNA in confined spaces. Here we report that porous anodic alumina (PAA) of a highly parallel nanochannel array covalently modified with proteins significantly modulates the transport of a negatively charged probe of ferricyanide due to the electrostatic interactions between the probes and modified nanochannel inner surface. Results show that such electrostatic interaction exists in a wide range of ionic strength from 1 mM to 100 mM in 20 nm nanochannels modified with proteins (hemoglobin, bovine serum albumin, and goat anti-rabbit IgG secondary antibody). In addition, the maximal steady-state flux of the charged probe through the modified nanochannel array is directly related to the ionic strength which determines the electric double layer thickness and solution pH which modulates the nanochannel surface charge. Thus, the modulated mass transport of the probe by solution pH can be used to study the charge properties of the immobilized proteins in nanochannel confined conditions, leading us to obtain the isoelectric point (pI) of the proteins confined in nanochannels. The determined pI values of two known proteins of hemoglobin and bovine serum albumin are close to the ones of the same proteins covalently modified on a 3-mercaptopropionic acid self-assembled monolayer/gold electrode. In addition, the pI of an unknown protein of goat anti-rabbit IgG secondary antibody confined in nanochannels was determined to be 6.3. Finally, the confinement effect of nanochannels on the charge properties of immobilized proteins has been discussed.  相似文献   

12.
Capillary impregnation into cylinder banks   总被引:3,自引:0,他引:3  
The capillary rise of liquid in a cylinder bank is examined in order to study the capillary pressure variation perpendicular to the direction of the cylinders. The calculations consider the local geometric variation of the flow channel and the position-dependent capillary pressure. The capillary flow around each cylinder is calculated by balancing the capillary pressure and the viscous drag along the flow path. The rate of filling for several layers of cylinders is used to estimate the equivalent capillary pressure. The method is also applied to the underfill of a flip chip system, which is modeled as a cylinder bank between parallel plates.  相似文献   

13.
The electrophoresis of two identical spheres moving along the axis of a long cylindrical pore under the conditions of low surface potential and weak applied electric field is investigated. The geometry considered allows us to examine simultaneously the effects of boundary and the presence of a nearby entity on the behavior of a particle. The influences of the separation distance between two spheres, the thickness of a double layer, the ratio (radius of sphere/radius of pore), and the charged conditions on the surfaces of the spheres and the pore on the mobility of a particle are investigated. Several interesting results that are not reported in the literature are observed. For instance, although for the case of two positively charged spheres in an uncharged pore the qualitative behavior of a sphere depends largely on its size relative to that of a pore and the thickness of the double layer, this might not be the case when two uncharged spheres are in a positively charged pore. In addition, in the latter, the mobility of a sphere increases with the increases in the separation distance between two spheres, and this effect is pronounced when the ratio (radius of sphere/radius of pore) takes a medium value or the thickness of the double layer is either sufficiently thin or sufficiently thick.  相似文献   

14.
15.
The sedimentation of a homogeneous distribution of spherical composite particles and the fluid flow through a bed of these particles are investigated theoretically. Each composite particle is composed of a spherical solid core and a surrounding porous shell. In the fluid-permeable porous shell, idealized hydrodynamic frictional segments are assumed to distribute uniformly. The effect of interactions among the particles is taken into explicit account by employing a fundamental cell-model representation which is known to provide good predictions for the motion of a swarm of nonporous spheres within a fluid. In the limit of a small Reynolds number, the Stokes and Brinkman equations are solved for the flow field in a unit cell, and the drag force exerted by the fluid on the particle is obtained in a closed form. For a distribution of composite spheres, the normalized mobility of the particles decreases or the particle interactions increase monotonically with a decrease in the permeability of their porous shells. The effect of particle interactions on the creeping motion of composite spheres relative to a fluid can be quite significant in some situations. In the limiting cases, the analytical solutions describing the drag force or mobility for a suspension of composite spheres reduce to those for suspensions of solid spheres and of porous spheres. The hydrodynamic behavior for composite spheres may be approximated by that for permeable spheres when the porous layer is sufficiently thick, depending on the permeability.  相似文献   

16.
The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

17.
Applying an electric field to an aqueous colloidal dispersion establishes a complex interplay of forces among the highly mobile simple ions, the more highly charged but less mobile colloidal spheres, and the surrounding water. This interplay can induce a wide variety of visually striking dynamical instabilities even when the applied field is constant. This paper reports on the highly organized patterns that emerge when electrohydrodynamic forces compete with gravity in thin layers of charge-stabilized colloidal spheres subjected to low voltages between parallel-plate electrodes. Depending on the conditions, these spheres can form levitating clusters with morphologies ranging from tumbling clouds to toroidal vortex rings and to writhing labyrinths.  相似文献   

18.
We use the framework of counterion condensation theory, in which deviations from linear electrostatics are ascribed to charge renormalization caused by collapse of counterions from the ion atmosphere, to explore the possibility of condensation on charged spheres, cylinders, and planes immersed in dilute solutions of simple salt. In the limit of zero concentration of salt, we obtain Zimm-Le Bret behavior: a sphere condenses none of its counterions regardless of surface charge density, a cylinder with charge density above a threshold value condenses a fraction of its counterions, and a plane of any charge density condenses all of its counterions. The response in dilute but nonzero salt concentrations is different. Spheres, cylinders, and planes all exhibit critical surface charge densities separating a regime of counterion condensation from states with no condensed counterions. The critical charge densities depend on salt concentration, except for the case of a thin cylinder, which exhibits the invariant criticality familiar from polyelectrolyte theory.  相似文献   

19.
The electrical interaction between two long, parallel cylinders each is covered by an ion-penetrable charged membrane immersed in an oil/water interface is investigated. The effects of contact angle, radius of cylinder, and membrane thickness on the electrical interaction force are examined. The results of numerical simulation reveal that the following conditions lead to a greater electrical interaction force: (i) a larger contact angle, i.e. a larger fraction of a cylinder in the oil phase; (ii) a larger cylinder radius; and (iii) a thinner membrane. For a fixed ionic strength, the electrical interaction force is insensible to the type of electrolytes in the water phase, in general. However, if two cylinders are close enough, then the higher the valence of counterions the greater the electrical interaction force.  相似文献   

20.
A new rectangular columnar liquid crystalline phase with p2gg lattice is reported, which represents a polygonal cylinder array composed of cylinders with trapezoidal cross section. In these polygonal cylinders, one of the sides has a different length and is composed of a different material than the others. This tiling pattern was obtained in two series of T-shaped facial amphiphilic triblock molecules in which a rigid rod-like p-terphenyl core is substituted laterally by a polar and flexible oligoethylene glycol chain, terminated either by a hydrogen-bonding COOH group or by a Li carboxylate group, and having identical or different alkyl groups in the terminal positions. The trapezoidal cylinder phase provides an improved packing for relatively long and rigid alkyl chains at lower temperature and more space inside the polygonal cylinders than triangular cylinders. This combination of conformational and space-filling effects leads to different phase sequences. The trapezoidal cylinder phases pave the way to a new level of complexity in LC engineering and show the huge potential of the general concept of polyphilic tectons for the design of new complex soft matter structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号