首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
合肥光源是一台专用同步辐射光源,它在低能注入积累束流,然后同步地把束流加速到高能并在储存环中稳定运行。在加速过程中,粒子的同步辐射能量损失迅速增加,束流负载效应发生变化,需要相应地调节高频系统参数保持束流稳定。讨论了合肥光源加速过程中高频系统可能的两种高频系统调节方式以及高能情况下高频系统的最佳运行状态。  相似文献   

2.
合肥光源储存环束流软慢加速控制   总被引:1,自引:0,他引:1       下载免费PDF全文
 合肥光源储存环为非满能量注入,束流以200MeV的能量注入到储存环后慢加速到800MeV。介绍了慢加速的理论依据及储存环主电源控制系统的硬件结构,详细描述了束流软慢加速方法中的慢加速表计算及慢加速过程控制。机器运行结果表明:软慢加速方法控制灵活,慢加速过程运行平稳,束流损失很少,能很好地满足合肥光源机器运行和研究的需要。  相似文献   

3.
合肥光源储存环为非满能量注入,束流以200MeV的能量注入到储存环后慢加速到800MeV。介绍了慢加速的理论依据及储存环主电源控制系统的硬件结构,详细描述了束流软慢加速方法中的慢加速表计算及慢加速过程控制。机器运行结果表明:软慢加速方法控制灵活,慢加速过程运行平稳,束流损失很少,能很好地满足合肥光源机器运行和研究的需要。  相似文献   

4.
 环境温度是影响电子束流轨道稳定性的重要因素之一,国内外大多数加速器实验室为此都建立了较为完备的环境温度监测系统和恒温空调系统。合肥光源(HLS)是第二代光源,全环闭合轨道垂直方向上要求稳定在100 mm以内。为定量研究和分析环境温度对合肥光源的电子束流轨道的影响,建立了环境温度监测系统。着重介绍了环境温度监测系统的组成、辐射干扰问题以及数据分析方法。数据分析结果表明:环境温度与束流位置之间具有较强的相关性,垂直方向环境温度每变化1 ℃,束流位置变化10~20 mm。  相似文献   

5.
描述了合肥同步辐射光源二期工程中,电子储存环升级的闭轨测量系统及其在设备研制中的应用。介绍了性能稳定可靠的Bergoz束流位置监测电子学信号处理器。升级后的闭轨测量系统中处理电子学电路的束流位置分辨率可达1μm,系统误差小于10μm。整个测试系统的分辨率小于3μm。利用该高精度闭轨测量系统和基于束流准直系统完成了束流准直四极铁磁中心的测量,并和控制系统完成了储存环全环闭轨反馈校正试验。一个完整的束流位置监测系统已投入了在线运行,保障了为用户提供高稳定高品质的光源。  相似文献   

6.
升级的合肥光源闭轨测量系统及其应用   总被引:7,自引:4,他引:3       下载免费PDF全文
 描述了合肥同步辐射光源二期工程中,电子储存环升级的闭轨测量系统及其在设备研制中的应用。介绍了性能稳定可靠的Bergoz束流位置监测电子学信号处理器。升级后的闭轨测量系统中处理电子学电路的束流位置分辨率可达1μm,系统误差小于10μm。整个测试系统的分辨率小于3μm。利用该高精度闭轨测量系统和基于束流准直系统完成了束流准直四极铁磁中心的测量,并和控制系统完成了储存环全环闭轨反馈校正试验。一个完整的束流位置监测系统已投入了在线运行,保障了为用户提供高稳定高品质的光源。  相似文献   

7.
合肥光源逐圈测量系统定标及其应用   总被引:1,自引:0,他引:1  
介绍合肥光源(HLS)逐圈测量系统和工作在4?0?8MHz的对数比率电子学处理系统的原理和性能.利用逐圈测量系统可以测量HLS储存环的Damping率、注入效率、Beta振荡、v值瞬时变化等,以此研究束流不稳定性,为机器稳定高性能运行提供了一个强有力的测试手段.在系统的设计中,选择了新近受到广泛重视的对数比电路完成位置信号处理.它不仅具有宽的动态范围和带宽以及好的线性度,而且造价低廉易实现.本文重点介绍了HLS逐圈测量系统的在线定标、灵敏度和它在升级后新注入调试中的重要应用.实践证明,该系统对新注入系统的调整是相当有用的.它是开展储存环的非线性动力学研究,观察动力学孔径不可缺少的设备.  相似文献   

8.
束流位置监测器(BPM)和与其相邻的四极铁之间的电偏移对于电子储存环轨道校正十分重 要。改变四极铁的强度,并通过测量轨道变化就能够计算出该四极铁的磁中心相对于相邻的BPM的电中心 之间的偏差。基于NSRL储存环的BBA硬件系统和EPICS控制系统,采用Labview平台开发出了BBA测量 的软件控制程序。由计算机控制四极铁的强度,连续测量后拟合得到四极铁的磁中心与相邻BPM的相对偏 差,测量精度可以达到100μm。  相似文献   

9.
蔡袁琦  唐雷雷  周泽然 《强激光与粒子束》2019,31(8):085103-1-085103-6
针对合肥光源储存环恒流运行(Top-off)改造等性能提升的需要,研制了新型的基于嵌入式EPICS架构的储存环束流损失监测(BLM)系统,用于监测储存环中束流损失发生的位置和大小。新BLM处理器获取储存环各处双PIN型光电二极管传感器所采集的簇射电子的信号,分析处理后通过各个处理器内部的嵌入式系统所运行的EPICS程序将数据实时发布到加速器控制网络,使中控室能够实时获取束损的数据。新BLM系统能够实时对双PIN型传感器进行自检操作,排查故障隐患,提高了系统运行的效率和可靠性,经过试运行表明,新BLM系统可完全满足合肥光源恒流的运行需要。  相似文献   

10.
束流位置监测器(BPM)和与其相邻的四极铁之间的电偏移对于电子储存环轨道校正十分重要。改变四极铁的强度,并通过测量轨道变化就能够计算出该四极铁的磁中心相对于相邻的BPM的电中心之间的偏差。基于NSRL储存环的BBA硬件系统和EPICS控制系统,采用Labview平台开发出了BBA测量的软件控制程序。由计算机控制四极铁的强度,连续测量后拟合得到四极铁的磁中心与相邻BPM的相对偏差,测量精度可以达到100 μm。  相似文献   

11.
 逐束团测量装置属于宽带和实时测量,足以分辨重复频率为204 MHz的相邻束团的信号,设计功能包括横向水平和垂直Beta振荡,纵向同步相位振荡,束团填充等信息的实时检测。对信号频谱分析,系统参数设计,前端射频检测,锁相环信号合成,高速数据采集以及基于PXI的整个系统作了详细介绍,分析了若干调试和实验结果,并讨论了合肥光源储存环目前存在的不稳定性及该测试手段在诊断中的应用。  相似文献   

12.
在合肥光源(HLS)储存环上进行了高频调制实验, 结果表明采用调制频率接近同步振荡频率fs的高频幅度或相位调制, 可以提高束流寿命. 而通常采用的是2fs的调制方式. 实验测量了最佳调制频率和合适的调制度, 以及不同流强下调制引起寿命增长的程度. 同时观察到束流频谱中高次分量的降低, 这有利于抑制多束团耦合不稳定性.  相似文献   

13.
黄贵荣 《中国物理 C》2006,30(7):684-687
在导纳坐标系中, 基于束流的导纳等效, 对束腔相互作用进行了分析, 得到了相关物理量的表达式. 利用这些公式, 研究了注入过程中重束流负载的瞬态Robinson~不稳定性. 与传统的方法相比, 导纳分析的推导比较简明, 表达式更具有物理直观性.  相似文献   

14.
HLS二期工程储存环调试中一些问题的物理分析   总被引:1,自引:0,他引:1  
介绍了合肥光源(HLS)二期工程储存环调试过程中遇到的一些现象, 并对这些现象进行了初步定量或定性的分析. 在现有硬件条件的基础上, 采取了一些相应的措施, 取得了一定的效果, HLS通用模式储存束流超过300mA, 寿命好于8h, 达到了设计要求.  相似文献   

15.
探讨了储存环束流的Robinson不稳定性问题,提出用“等效失谐角大于零”取代“失谐角大于零”作为束流稳定的基本条件。在合肥光源电子储存环200 MeV注入状态下,对束流不稳定性与高频腔失谐之间的关系进行了实验测量。结果表明:当束流稳定条件不满足时,如果高频腔大失谐,束流将全部丢失;小失谐时束流容易部分丢失;当高频腔处于负失谐状态,束流流强将限制在较低水平。  相似文献   

16.
介绍了在合肥光源开展逐束团测量(横向和纵向)和横向束流反馈系统研究和研制的重要性,同时还介绍了设计思想。合肥光源高频频率为204 MHz,因此,系统至少需要100 MHz的带宽。还较详细地介绍了宽带部件和系统参数的选择原则。该系统不仅可用于研究由于高频腔中的高阶模和真空室的阻抗壁效应所引起的耦合束团不稳定性,而且还能抑制耦合束团不稳定性振荡、快速束流离子不稳定性和注入大幅度振荡等,从而将提高机器的运行性能。  相似文献   

17.
合肥光源逐束团测量和横向束流反馈系统设计   总被引:4,自引:7,他引:4       下载免费PDF全文
 介绍了在合肥光源开展逐束团测量(横向和纵向)和横向束流反馈系统研究和研制的重要性,同时还介绍了设计思想。合肥光源高频频率为204 MHz,因此,系统至少需要100 MHz的带宽。还较详细地介绍了宽带部件和系统参数的选择原则。该系统不仅可用于研究由于高频腔中的高阶模和真空室的阻抗壁效应所引起的耦合束团不稳定性,而且还能抑制耦合束团不稳定性振荡、快速束流离子不稳定性和注入大幅度振荡等,从而将提高机器的运行性能。  相似文献   

18.
 合肥光源(Hefei Light Source,HLS)200 MeV直线加速器的束流横向位置是一个重要的运行参数,直接决定注入的效率,为此新开发了一种非拦截型、高精度、易于将测量结果数字化的条带电极束流位置测量系统(beam position monitor, BPM),该系统由条带电极和信号处理系统组成。信号处理系统选用对数比的信号处理方法,由带通滤波器(BPF)、对数检波模块、信号放大器、模数转换模块和上位机组成。带通滤波器选用中心频率为2.856 GHz、带宽为10 MHz的腔体滤波器,对数检波模块采用对数放大器AD8313芯片,模数转换模块采用NI公司的PXI-5102,上位机的数据采集程序采用Labview编写。本系统有效地采用了虚拟仪器(VI)的技术,具有模块化、开放性、易于交互、可扩展的特点,测试结果表明,其分辨率达到0.1 mm,符合设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号