首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用巨正则系综蒙特卡罗(grand canonical Monte Carlo, GCMC)与分子动力学(molecular dynamics, MD)相结合的方法, 研究烷烃分子在丝光沸石(MOR)型分子筛中的吸附和扩散性质. 采用GCMC 方法研究温度为300 K、330 K时, MOR型分子筛中甲烷、乙烷、丙烷、丁烷的吸附. 研究表明, 随着压力的增加吸附量增加, 随温度的升高吸附量有所降低. 饱和吸附量从大到小依次为: 甲烷>乙烷>丙烷>丁烷. 由模拟所得到的单组分吸附等温线, 通过理想吸附溶液理论(IAST)计算二元混合物的吸附平衡相图, 模拟结果与计算结果一致. 采用分子动力学方法, 研究乙烷、丙烷在MOR分子筛上的扩散性质, 结果表明各个方向上的扩散系数不同, z方向上的扩散系数最大.  相似文献   

2.
吕玲红  王琦  刘迎春 《化学学报》2003,61(8):1232-1240
用巨正则是系综Monte Carlo(GCMC)与构型偏倚(CBMC)相结合的方法模拟了 MFI分子筛对甲烷-丙烷、乙烷-丙烷体系(300K,345kPa)的吸附平衡,模拟结果与 文献实验结果相吻合,分别模拟了FER,ISV,MEL,MFI,MOR,TON等六种分子筛对 甲烷-丙烷、乙烷-丙烷体系(300K,345kPa)的吸附,得出甲烷-丙烷体系中分 子筛对较长链烷烃的选择性大小顺序(气相乙烷摩尔分数为0.5时)为ISV>MEI> MEL>FER>TON>MOR,对乙烷-丙烷体系选择性大小顺序(气相乙烷摩尔分数为0. 5时)为ISV>MOR>MFI>FER>MEL>TON. MOR型分子筛对两个不同体系的吸附行为 表现出明显的不同,两个体中ISV的吸附量均最大,MFI,MEL,FER次之,此三种分 子筛具有相拟的吸附量,MOR和TON型分子筛吸附量较低。  相似文献   

3.
贾玉香  郭向云 《分子催化》2006,20(2):162-165
利用Monte Carlo(MC)方法考察了烷烃的分子尺寸与介质孔道尺寸对孔道中甲醇脱附和萃取的影响.研究表明,随孔道尺寸的增加,不同碳链的正烷烃(C5~C8)对甲醇脱附作用受孔尺寸的影响在逐渐减小;孔道尺寸不同对正烷烃萃取能力的影响程度也不相同.  相似文献   

4.
从天然气中回收C2/C3低碳烃组分以及乙烯/乙烷、丙烯/丙烷的分离纯化具有重要的工业价值,吸附分离技术可以在常温常压下高效分离低碳烃。对金属有机骨架(Metal-Organic Framework,MOF)材料进行次级结构单元(Second Building Units,SBU)调控,构筑限域强化的碱性孔道化学微环境并引入新的吸附位点,可以提升其吸附分离性能。文章用三乙烯二胺(TED)取代Zr-TBAPy中SBU配位的水分子,制备了具有更大烷烃吸附容量和选择性的TED@Zr-TBAPy。其中,TED1/3@Zr-TBAPy表现出优先吸附烷烃的特征,丙烷/丙烯、乙烷/乙烯的理想吸附溶液理论(Ideal Adsorption Solution Theory,IAST)选择性分别为1.32、1.49,比Zr-TBAPy提高了15.7%和3.5%。常温常压下,丙烷/甲烷和乙烷/甲烷的IAST选择性分别达到287和14,比Zr-TBAPy提高了116%和19.7%,超过大部分已报道的同类材料。机理研究表明,TED的引入提高了孔道的限域吸附作用,同时引入对烷烃具有更强吸附作用...  相似文献   

5.
本文通过巨正则系综Monte Carlo方法研究了不同孔径下氮气、氢气和甲烷在方孔和矩形孔中的吸附。比较了三种势能模型后,采用了最合理的点对点模型。比较了77K时流体在圆柱状孔、方孔和矩形孔的吸附。由于“角”的影响,在方孔和矩形孔内有明显的润湿效应,而圆柱状孔内则没有。文章中比较了氢气和甲烷在三种不同的孔内吸附的情况。研究表明:氢气在方孔内的吸附能力最强,在低压时尤为显著,这是因为“角落”处势能重叠的作用。结果显示在低压时,“角”的存在对流体的吸附和相行为有较强的影响。  相似文献   

6.
一、前言 本文第I部分介绍了低碳烷烃中资源最丰富的甲烷的催化加工利用方面的情况。第II部分将介绍其他几个低碳烷烃(乙烷、丙烷、丁烷)的情况。这三种烷烃的主要来源是石油伴生气,某些成分较重的天然气以及炼油厂副产的炼厂气。其数量虽不如甲烷多,  相似文献   

7.
曹小安  李锦文  彭燕 《分析化学》2006,34(Z1):299-302
报道了一种用于定量分析易爆气体混合物丙烷和异丁烷的基于碳酸锶纳米材料的催化发光传感器.基于该传感器在不同温度下对两种气体的灵敏度不同,在320℃和342℃两个工作温度下,两种气体的浓度范围均为1000 mL/m3~10000 mL/m3时,分别建立了混合组分浓度相对催化发光强度的两个线性回归方程.在342℃时,丙烷和异丁烷的检出限(3σ)分别为50 mL/m3和20 mL/m3.可通过解上述两个联立方程式求得未知混合物中两组分的浓度.外来物质甲烷、乙烷、CO、氨气通过传感器时,甲烷和乙烷分别引起5.6%和17.2%的干扰,其它气体不干扰测定.20000 mL/m3的水蒸气不干扰2000 mL/m3丙烷和异丁烷气体的测定.用该法分析了人工合成样品中两种气体的浓度.  相似文献   

8.
在情性担体表面上用化学法涂渍20%氧化铝吸附层,再涂以0.1%异三十烷作去尾剂,使氧化铝表面钝化稳定。用装有上述固定相的长6米、内径0.4厘米的色谱柱,可在柱温40℃和10分钟内分离甲烷、乙烷、乙烯、丙烷、丙烯、异丁烷、正丁烷、正丁烯、异丁烯、反丁烯-[2]和顺丁烯-[2]等十一个组分。  相似文献   

9.
在小型常压固定床反应器中研究了不同离子浸渍改性对纳米ZSM-5固体酸催化剂上丁烷和丁烯转化的影响.结果表明,混和碳四中异丁烷比正丁烷易转化,丁烯异构体的转化与其在原料中的含量有关.在贫烯烃原料中,丁烯倾向于生成.在富丁烯原料中,丁烯倾向于转化.但在两种情况下,产物中各丁烯含量大体上按异丁烯、顺反-丁烯-2和丁烯-1顺序递减.采用锌离子改性时异丁烷转化率提高、正丁烷转化率降低.锌离子改性有利于芳烃选择性,但是副产物甲烷和乙烷的产率也较高;铁离子改性对丁烷和丁烯的转化影响不大,但能减少甲烷和乙烷的生成,并提高芳烃选择性;与锌改性相比,锌钠双离子改性降低了异丁烷、正丁烷和丁烯-1的转化率,减少了芳烃产率,但能明显促进丙烯和丁烯的生成.上述结果为碳四液化气综合利用提供了有益信息.  相似文献   

10.
采用溶剂热法,将均苯三甲酸(H3BTC)与硝酸铜进行反应合成了金属-有机骨架(Metal-Organic Frameworks,MOFs)微孔材料Cu-BTC;利用原位合成法,将Cu-BTC负载到介孔/大孔二氧化硅孔道中,获得介孔CuBTC-SiO2材料。通过静态吸附实验,测定了正己烷(n-C6)、环己烷(c-C6)和正癸烷(n-C10)在Cu-BTC及CuBTC-SiO2上的吸附速率曲线,结果表明,将微孔材料Cu-BTC负载在SiO2之后,CuBTC-SiO2中既有微孔又有一定量的介孔,适量的介孔结构可减小其对正己烷的静态饱和吸附量,但增加对环己烷和正癸烷的静态饱和吸附量。实验测得CuBTC-SiO2对c-C6和n-C10都具有更大的静态饱和吸附量。因此CuBTC-SiO2材料可望应用在烷烃的吸附分离上。  相似文献   

11.
Grand canonical Monte Carlo and configurational-bias Monte Carlo techniques are carried out to simulate the adsorption of ternary and quaternary mixtures of short linear alkanes, involving methane, ethane, propane, and n-butane, in pillared layered materials at ambient temperature, T=300 K. In the simulation, a pillared layered pore is modeled by a uniform distribution of pillars between two layered walls built by making two separate talc lamellas parallel each other with a given size of interlayer distance. The interaction between fluid molecules and two layered walls is measured by storing potentials calculated in advance at a series of grid points. The interaction between fluid molecules and pillars is also calculated by a site-to-site method. The potential model proposed in this work is proved to be effective because of the simulation result being good agreement with the experimental data for the adsorption of nitrogen at 77 K. Then, the adsorption isotherms of mixtures of short linear alkanes in pillared layered pores with three different porosities psi=0.98, 0.93 and 0.85, and three pore widths H=1.02, 1.70 and 2.38 nm at 300 K are obtained by taking advantage of the model. The simulation results tell us that the longer chain component is preferentially adsorbed at low pressures, and its adsorption increases and then decreases as the pressure increases while the shorter chain component is still adsorbed at high pressures. Moreover, the sorption selectivity of pillared layered materials for the longest chain component in alkane mixtures increases as the mole fraction of methane in the gas phase increases. The selectivity of pillared layered materials for the longest chain component in alkane mixtures also increases as the pore width decreases and the porosity increases.  相似文献   

12.
The solubility of i-butane in water at the low temperatures was measured (274 K to 293 K). Additionally, Henry’s law constants of light hydrocarbons (methane, ethane, propane, i-butane, and n-butane) in water at the low temperatures are reported. A modified equation based on Krichevsky–Kasarnovsky equation is proposed to consider the effect of pressure and temperature on the equation parameters. Results show that Henry’s law constant of the selected components depends on temperature. It is deduced that pressure has a considerable effect on Henry’s law constant for methane, ethane, and propane, whereas this dependency for butanes is negligible.  相似文献   

13.
The equilibrium adsorption of the light alkanes methane, ethane, propane, n-butane, and i-butane in silicalite-1 has been investigated using the TEOM technique. Either a conventional or a dual-site Langmuir isotherm appropriately describes the equilibrium data. Good agreement with the literature data determined by other techniques indicates the TEOM is a reliable technique. The adsorption of i-butane in silicalite-1 reveals the discrete preferential molecular siting, implying a discrete-dual-structural heterogeneity for light alkanes in silicalite-1.  相似文献   

14.
T. Vuong  P.A. Monson 《Adsorption》1999,5(4):295-304
We present results of a Monte Carlo simulation study of binary mixtures of ethane and methane in silica gel. The molecular model treats the adsorbent as a matrix of silica microspheres. The adsorption isotherms, adsorption selectivities and isosteric heats of adsorption have been determined for these systems. The results are compared with predictions from the ideal adsorbed solution (IAS) theory and with experiment. The heats of adsorption are accurately described by the IAS theory. The adsorption isotherms are accurately described by the IAS theory at low bulk pressure but the IAS theory overpredicts the density at high bulk pressure. This latter effect is opposite to that observed in bulk mixtures of this type where nonidealities generally lead to a density increase on mixing. The pressure dependence of the selectivity does not exhibit a maximum at low pressure. We discuss this effect in terms of the adsorbent microstructure.  相似文献   

15.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

16.
We present Mont Carlo computer simulation results for a molecular model of fluids adsorbed in porous carbon materials. The model carbon used is based on the platelet model for carbon of Segarra and Glandt (1994). The model we use has a single basal plane per platelet and the structure is isotropic, disordered, with weak short-range correlations between the platelets. We have performed grand canonical Monte Carlo simulations of the adsorption isotherms for methane, ethane, and their mixtures in this model carbon. We find generally good agreement with experimental and the mixture results are quite accurately described by the ideal adsorbed solution theory. An exception to this is the behavior for the mixture at the highest pressures. In this case the experimental data show significant deviations from ideal adsorbed solution theory and the simulation results.  相似文献   

17.
Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.  相似文献   

18.
The transport mechanism was investigated for n-butane, 1-butene, ethane, and ethene through anhydrous Ag+-doped PSM at various upstream gas pressures. 1-Butene and ethene molecules can be adsorbed and form multilayers on the Ag+ sites in the membrane. Their adsorption behavior can be described by the BET n-layer adsorption theory. These adsorbed alkene molecules can also swell the surrounding polymer chains to a certain extent, causing resistance to the migration of these alkene multilayer molecules to decrease as the concentration of the adsorbed alkenes increases. The permeation behavior of 1-butene and ethene is mainly controlled by the hydrodynamic surface flow mechanism, and their fluxes are much higher than those of alkanes, especially at high upstream gas pressures. This leads to the high ideal selectivity of 1-butene/n-butane and ethene/ethane at relatively high pressure. It is also shown that the more C atoms present in the hydrocarbon molecules, the higher will be the permselectivity of alkenes relative to their corresponding saturated alkanes, which will be expected in the anhydrous Ag+-doped PSM. Copyright 1999 Academic Press.  相似文献   

19.
用脉冲微反装置评价了正丁烷和异丁烷在氢型和锌改性的纳米ZSM-5催化剂上的反应活性和芳构化选择性.结果表明,在550℃下,异丁烷在氢型和不同锌负载量的纳米ZSM-5催化剂上的转化率都远高于正丁烷,但其芳构化选择性低于正丁烷.脱甲基活化是异丁烷和正丁烷的重要活化方式,也是影响其芳构化选择性的主要因素.锌改性在提高异丁烷和正丁烷转化率的同时,也促进了正丁烷和异丁烷的脱甲基活化.在混合丁烷进料反应的情况下,正丁烷和异丁烷的转化率与其单独进料时十分接近,这说明正丁烷和异丁烷共存时不会发生明显的竞争吸附和反应.纳米ZSM-5因晶粒度小,孔道短和微孔扩散阻力低而有利于异丁烷转化.  相似文献   

20.
Atomistic grand canonical Monte Carlo simulations were performed in this work to investigate the role of open copper sites of Cu-BTC in affecting the separation of carbon monoxide from binary mixtures containing methane, nitrogen, or hydrogen. Mixtures containing 5%, 50%, or 95% CO were examined. The simulations show that electrostatic interactions between the CO dipole and the partial charges on the metal-organic framework (MOF) atoms dominate the adsorption mechanism. The binary simulations show that Cu-BTC is quite selective for CO over hydrogen and nitrogen for all three mixture compositions at 298 K. The removal of CO from a 5% mixture with methane is slightly enhanced by the electrostatic interactions of CO with the copper sites. However, the pore space of Cu-BTC is large enough to accommodate both molecules at their pure-component loadings, and in general, Cu-BTC exhibits no significant selectivity for CO over methane for the equimolar and 95% mixtures. On the basis of the pure-component and low-concentration behavior of CO, the results indicate that MOFs with open metal sites have the potential for enhancing adsorption separations of molecules of differing polarities, but the pore size relative to the sorbate size will also play a significant role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号