共查询到20条相似文献,搜索用时 15 毫秒
1.
In molecular docking, it is challenging to develop a scoring function that is accurate to conduct high-throughput screenings. Most scoring functions implemented in popular docking software packages were developed with many approximations for computational efficiency, which sacrifices the accuracy of prediction. With advanced technology and powerful computational hardware nowadays, it is feasible to use rigorous scoring functions, such as molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) in molecular docking studies. Here, we systematically investigated the performance of MM/PBSA and MM/GBSA to identify the correct binding conformations and predict the binding free energies for 98 protein-ligand complexes. Comparison studies showed that MM/GBSA (69.4%) outperformed MM/PBSA (45.5%) and many popular scoring functions to identify the correct binding conformations. Moreover, we found that molecular dynamics simulations are necessary for some systems to identify the correct binding conformations. Based on our results, we proposed the guideline for MM/GBSA to predict the binding conformations. We then tested the performance of MM/GBSA and MM/PBSA to reproduce the binding free energies of the 98 protein-ligand complexes. The best prediction of MM/GBSA model with internal dielectric constant 2.0, produced a Spearman's correlation coefficient of 0.66, which is better than MM/PBSA (0.49) and almost all scoring functions used in molecular docking. In summary, MM/GBSA performs well for both binding pose predictions and binding free-energy estimations and is efficient to re-score the top-hit poses produced by other less-accurate scoring functions. 相似文献
2.
Electronic structures and properties of several anions, metal cations, and their complexes with neutral molecules were investigated at the HF/6‐31G** and B3LYP/6‐31G** levels of theory. Charges shifted from atomic sites due to atomic orbital hybridization called hybridization displacement charges (HDC) were investigated in detail. It has been found that many components of HDC are associated with each atom of ion that are shifted from the atomic sites, those associated with metal cations being shifted by large distances as found previously in electrically neutral systems. It is shown that atomic orbitals are appreciably rehybridized in going from neutral molecules to anions and cations. Molecular dipole moments and surface molecular electrostatic potentials (MEP) are obtained satisfactorily using HDC for the various types of species mentioned above. In the OH?? H2O complex, reversal of direction of shift of an HDC component associated with the hydrogen atom of H2O involved in hydrogen bonding, indicates that the hydrogen bond between OH? and H2O would have some covalent character. Other atomic site‐based point charge models cannot provide such information about the nature of bonding. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem 2007 相似文献
3.
Different integrator time steps in NVT and NVE simulations of protein and nucleic acid systems are tested with the GBMV (Generalized Born using Molecular Volume) and GBSW (Generalized Born with simple SWitching) methods. The simulation stability and energy conservation is investigated in relation to the agreement with the Poisson theory. It is found that very close agreement between generalized Born methods and the Poisson theory based on the commonly used sharp molecular surface definition results in energy drift and simulation artifacts in molecular dynamics simulation protocols with standard 2-fs time steps. New parameters are proposed for the GBMV method, which maintains very good agreement with the Poisson theory while providing energy conservation and stable simulations at time steps of 1 to 1.5 fs. 相似文献
4.
Chang Liu Shanshan Guan Jingwen E Zhijie Yang Xinyue Zhang Jianan Ju Song Wang Hao Zhang 《Molecules (Basel, Switzerland)》2022,27(21)
Monoacylglycerol lipase (MAGL) can regulate the endocannabinoid system and thus becomes a target of antidepressant drugs. In this paper, molecular docking and molecular dynamics simulations, combined with binding free energy calculation, were employed to investigate the inhibitory mechanism and binding modes of four aryl formyl piperidine derivative inhibitors with different 1-substituents to MAGL. The results showed that in the four systems, the main four regions where the enzyme bound to the inhibitor included around the head aromatic ring, the head carbonyl oxygen, the tail amide bond, and the tail benzene ring. The significant conformational changes in the more flexible lid domain of the enzyme were caused by 1-substituted group differences of inhibitors and resulted in different degrees of flipping in the tail of the inhibitor. The flipping led to a different direction of the tail amide bond and made a greater variation in its interaction with some of the charged residues in the enzyme, which further contributed to a different swing of the tail benzene ring. If the swing is large enough, it can weaken the binding strength of the head carbonyl oxygen to its nearby residues, and even the whole inhibitor with the enzyme so that the inhibition decreases. 相似文献
5.
Basma M Sundara S Calgan D Vernali T Woods RJ 《Journal of computational chemistry》2001,22(11):1125-1137
In the calculation of partial atomic charges, for use in molecular mechanics or dynamics simulations, it is common practice to select only a single conformation for the molecule of interest. For molecules that contain rotatable bonds, it is preferable to compute the charges from several relevant conformations. We present here results from a charge derivation protocol that determines the partial charges by averaging charges computed for conformations selected from explicitly solvated MD simulations, performed under periodic boundary conditions. This approach leads to partial charges that are weighted by a realistic population of conformations and that are suitable for condensed phase simulations. This protocol can, in principle, be applied to any class of molecule and to nonaqueous solvation. Carbohydrates contain numerous hydroxyl groups that exist in an ensemble of orientations in solution, and in this report we apply ensemble averaging to a series of methyl glycosides. We report the extent to which ensemble averaging leads to charge convergence among the various monosaccharides and among the constituent atoms within a given monosaccharide. Due to the large number of conformations (200) in our ensembles, we are able to compute statistically relevant standard deviations for the partial charges. An analysis of the standard deviations allows us to assess the extent to which equivalent atom types may, nevertheless, require unique partial charges. The configurations of the hydroxyl groups exert considerable influence on internal energies, and the limits of ensemble averaged charges are discussed in terms of these properties. 相似文献
6.
7.
The effect of isodensity surface sampling on ESP derived charges and the effect of adding bondcenters on DMA derived charges 总被引:2,自引:0,他引:2
The effect of sampling the electrostatic potential around a molecule on the quality of electrostatic potential derived charges is investigated. In addition, the effect of the number of expansion sites in a Distributed Multipole Analysis (DMA) on the quality of charges fitted to the DMA derived electrostatic potential is investigated. Sampling on constant electron density surfaces gives a better fit between the quantum mechanical potential and the potential derived from the fitted charges, compared to sampling on a van der Waals surface composed of intersecting spheres. The fit between the electrostatic potential derived from point charges and the quantum mechanical potential becomes poorer with increasing quality of the employed basis set. The inclusion of bondcenters into the calculations improves the fit between the Quantum Mechanical (QM) electrostatic potential and the DMA derived potential. The number of expansion sites needed for an accurate approximation of the QM electrostatic potential increases with increasing quality of the used basis set. 相似文献
8.
9.
Biofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development. Here we describe and apply an in silico computational protocol for identifying novel potential inhibitors of quorum-sensing, using CviR—the quorum-sensing receptor from Chromobacterium violaceum—as a model target. This in silico approach combines protein-ligand docking (with 7 different docking programs/scoring functions), receptor-based virtual screening, molecular dynamic simulations, and free energy calculations. Particular emphasis was dedicated to optimizing the discrimination ability between active/inactive molecules in virtual screening tests using a target-specific training set. Overall, the optimized protocol was used to evaluate 66,461 molecules, including those on the ZINC/FDA-Approved database and to the Mu.Ta.Lig Virtual Chemotheca. Multiple promising compounds were identified, yielding good prospects for future experimental validation and for drug repurposing towards QS inhibition. 相似文献
10.
D.A. Shulga A.A. Oliferenko S.A. Pisarev V.A. Palyulin 《SAR and QSAR in environmental research》2013,24(1-2):153-165
Two novel approaches to construct empirical schemes for partial atomic charge calculation were proposed. The charge schemes possess important benefits. First, they produce both topologically symmetrical and environment dependent charges. Second, they can be parameterised to reasonably reproduce ab initio molecular electrostatic potential (MEP), which guarantees their successful use in molecular modelling. To validate the approaches, the parameters of the proposed charge schemes were fitted to best reproduce MEP simultaneously on grids around a set of 227 diverse organic compounds. The residual errors in MEP reproduction due to calculated atomic charges were compared to those due to charges from known charge schemes. 相似文献
11.
Urokinase plasminogen activator (uPA) is an enzyme involved in cancer growth and metastasis. Therefore, the design of inhibitors of uPA is of high therapeutic value, and several chemical families have been explored, even if none has still emerged, emphasizing the need of a rationalized approach. This work represents a complete computational study of uPA complexed with five inhibitors, which present weak similarities. Molecular dynamics simulations in explicit solvent were conducted, and structural analyses, along with molecular mechanics (MM)/Poisson-Boltzmann surface area free energies estimations, yield precious structure-activity relationships of these inhibitors. Besides, we realized supplemental QM/MM computations that improved drastically the quality of our models providing original information on the hydrogen bonds and charge transfer effects, which are, most often, neglected in other studies. We suggest that these simulations and analyses could be reproduced for other systems involving protein/ligand molecular recognitions. 相似文献
12.
The present work provides a detailed investigation on the use of singular value decomposition (SVD) to solve the linear least-squares problem (LLS) for the purposes of obtaining potential-derived atom-centered point charges (PD charges) from the ab initio molecular electrostatic potential (V(QM)). Given the SVD of any PD charge calculation LLS problem, it was concluded that (1) all singular vectors are not necessary to obtain the optimal set of PD charges and (2) the most effective set of singular vectors do not necessarily correspond to those with the largest singular values. It is shown that the efficient use of singular vectors can provide statistically well-defined PD charges when compared with conventional PD charge calculation methods without sacrificing the agreement with V(QM). As can be expected, the methodology outlined here is independent of the algorithm for sampling V(QM) as well as the basis set used to calculate V(QM). An algorithm is provided to select the best set of singular vectors used for optimal PD charge calculations. To minimize the subjective comparisons of different PD charge sets, we also provide an objective criterion for determining if two sets of PD charges are significantly different from one another. 相似文献
13.
We study how the results of molecular dynamics (MD) simulations are affected by various choices during the setup, e.g., the starting velocities, the solvation, the location of protons, the conformation of His, Asn, and Gln residues, the protonation and titration of His residues, and the treatment of alternative conformations. We estimate the binding affinity of ligands to four proteins calculated with the MM/GBSA method (molecular mechanics combined with a generalized Born and surface area solvation energy). For avidin and T4 lysozyme, all variations gave similar results within 2 kJ/mol. For factor Xa, differences in the solvation or in the selection of alternative conformations gave results that are significantly different from those of the other approaches by 4-6 kJ/mol, whereas for galectin-3, changes in the conformations, rotations, and protonation gave results that differed by 10 kJ/mol, but only if residues close to the binding site were modified. This shows that the results of MM/GBSA calculations are reasonably reproducible even if the MD simulations are set up with different software. Moreover, we show that the sampling of phase space can be enhanced by solvating the systems with different equilibrated water boxes, in addition to the common use of different starting velocities. If different conformations are available in the crystal structure, they should also be employed to enhance the sampling. Protonation, ionization, and conformations of Asn, Gln, and His may also be used to enhance sampling, but great effort should be spent to obtain as reliable predictions as possible close to the active site. 相似文献
14.
15.
The molecular mechanics/generalized Born surface area (MM/GBSA) method has been investigated with the aim of achieving a statistical precision of 1 kJ/mol for the results. We studied the binding of seven biotin analogues to avidin, taking advantage of the fact that the protein is a tetramer with four independent binding sites, which should give the same estimated binding affinities. We show that it is not enough to use a single long simulation (10 ns), because the standard error of such a calculation underestimates the difference between the four binding sites. Instead, it is better to run several independent simulations and average the results. With such an approach, we obtain the same results for the four binding sites, and any desired precision can be obtained by running a proper number of simulations. We discuss how the simulations should be performed to optimize the use of computer time. The correlation time between the MM/GBSA energies is ~5 ps and an equilibration time of 100 ps is needed. For MM/GBSA, we recommend a sampling time of 20–200 ps for each separate simulation, depending on the protein. With 200 ps production time, 5–50 separate simulations are required to reach a statistical precision of 1 kJ/mol (800–8000 energy calculations or 1.5–15 ns total simulation time per ligand) for the seven avidin ligands. This is an order of magnitude more than what is normally used, but such a number of simulations is needed to obtain statistically valid results for the MM/GBSA method. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010 相似文献
16.
Complexes of two Cyanovirin-N (CVN) mutants, m4-CVN and P51G-m4-CVN, with deoxy di-mannose analogs were employed as models to generate conformational ensembles using explicit water Molecular Dynamics (MD) simulations in solution and in crystal environment. The results were utilized for evaluation of binding free energies with the molecular mechanics Poisson-Boltzmann (or Generalized Born) surface area, MM/PB(GB)SA, methods. The calculations provided the ranking of deoxy di-mannose ligands affinity in agreement with available qualitative experimental evidences. This confirms the importance of the hydrogen-bond network between di-mannose 3'- and 4'-hydroxyl groups and the protein binding site B(M) as a basis of the CVN activity as an effective HIV fusion inhibitor. Comparison of binding free energies averaged over snapshots from the solution and crystal simulations showed high promises in the use of the crystal matrix for acceleration of the conformational ensemble generation, the most time consuming step in MM/PB(GB)SA approach. Correlation between energy values based on solution versus crystal ensembles is 0.95 for both MM/PBSA and MM/GBSA methods. 相似文献
17.
We present a new hybrid explicit/implicit solvent method for dynamics simulations of macromolecular systems. The method models explicitly the hydration of the solute by either a layer or sphere of water molecules, and the generalized Born (GB) theory is used to treat the bulk continuum solvent outside the explicit simulation volume. To reduce the computational cost, we implemented a multigrid method for evaluating the pairwise electrostatic and GB terms. It is shown that for typical ion and protein simulations our method achieves similar equilibrium and dynamical observables as the conventional particle mesh Ewald (PME) method. Simulation timings are reported, which indicate that the hybrid method is much faster than PME, primarily due to a significant reduction in the number of explicit water molecules required to model hydration effects. 相似文献
18.
EGFR和4-苯胺喹唑啉类抑制剂之间相互作用模式的研究 总被引:12,自引:0,他引:12
采用分子动力学和MM/PBSA相结合的方法预测了表皮生长因子受体和4-苯胺喹 啉类抑制剂的相互作用模式。在分子动力学采样的基础上,采用MM/PBSA的方法分 别预测了四种可能结合模式下表皮生长因子受体和4-苯胺喹唑啉类抑制剂间的结合 自由能。在MM/PBSA计算中,受体和抑制剂之间的非键相互作用能采用分子力学 (MM)的方法得到;溶剂效应中极性部分对自由能的贡献通过解Possion- Boltzmanne (PB)方程的方法得到;溶液效应中非极性部分对自由能的贡献则通过 分子表面积计算(SA)的方法得到。计算表明,在四种结合模式下,表皮生长因子受 体和4-苯胺喹唑啉类抑制剂之间的结合自由能有较大的差别。在最佳的相互作用模 式中,抑制剂的苯胺部分位于活性口袋的底部,能够与受体残基的非极性侧链产生 很强的范德华和疏水相互作用。抑制剂喹唑啉环上的N(1)原子能够和Met-769上的 NH形成稳定的氢键,而抑制剂上的N(3)原子则和周围的一个水分子形成氢键。同时 ,抑制剂双环上的取代基团也能和活性口袋外部的部分残基形成一定的范德华和疏 水相互作用。最佳结合模式能够很好地解释已有抑制剂结构和活性间的关系。 相似文献
19.
M.I. El-Barghouthi C. Jaime R.E. Akielah N.A. Al-Sakhen N.A. Masoud A.A. Issa 《Supramolecular chemistry》2013,25(7):603-610
Molecular dynamics (MD) simulations have been conducted to explore time-resolved guest–host interactions involving inclusion complex formation between β-cyclodextrin and organic molecules bearing two peripheral benzene rings in aqueous solution. Moreover, free energy perturbation (FEP) and thermodynamic integration (TI) methods at different simulation times have been employed to estimate the relative free energy of complexation. Also, the less computer-time demanding molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA) method was used to estimate the free energy of complexation based on only 1-ns MD simulation. Results showed that both FEP and TI methods were able to reasonably reproduce the experimental thermodynamic quantities. However, long simulation times (e.g. 15 ns) were needed for benzoin mutating to benzanilide (BAN), while moderately shorter times were sufficient for BAN mutating to phenyl benzoate and for benzilic acid mutating to diphenylacetic acid. The results have been discussed in the light of the differences in the chemical structural and conformational features of the guest molecules. In general, it was apparent that the TI method requires less time for convergence of results than the FEP method. However, the less expensive MM/PBSA method proved capable of producing results that are in agreement with those of the more expensive TI and FEP methods. 相似文献
20.
J. Santeri Puranen Mikko J. Vainio Mark S. Johnson 《Journal of computational chemistry》2010,31(8):1722-1732
The atom‐centered partial charges‐approximation is commonly used in current molecular modeling tools as a computationally inexpensive alternative to quantum mechanics for modeling electrostatics. Even today, the use of partial charges remains useful despite significant advances in improving the efficiency of ab initio methods. Here, we report on new parameters for the EEM and SFKEEM electronegativity equalization‐based methods for rapidly determining partial charges that will accurately model the electrostatic potential of flexible molecules. The developed parameters cover most pharmaceutically relevant chemistries, and charges obtained using these parameters reproduce the B3LYP/cc‐pVTZ reference electrostatic potential of a set of FDA‐approved drug molecules at best to an average accuracy of 13 ± 4 kJ mol?1; thus, equipped with these parameters electronegativity equalization‐based methods rival the current best non‐quantum mechanical methods, such as AM1‐BCC, in accuracy, yet incur a lower computational cost. Software implementations of EEM and SFKEEM, including the developed parameters, are included in the conformer‐generation tool BALLOON , available free of charge at http://web.abo.fi/fak/mnf/bkf/research/johnson/software.php . © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010 相似文献