首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To improve the efficiency of confocal optical beam induced current (OBIC) and the non-destructive, high-resolution analysis of semiconductor media we report the application of a white-light supercontinuum laser source capable of confocal OBIC across a wide spectral range. To demonstrate the capability of this source, we performed confocal OBIC of light emitting diodes with varying absorption and emission properties in the visible spectrum. Using the wavelength flexibility afforded by the broadband laser source, we were able to determine and apply the optimum excitation wavelength range for efficient confocal OBIC instead of applying inferior fixed wavelength laser sources. PACS 87.64.Tt; 85.30.De  相似文献   

2.
Kao FJ  Huang MK  Wang YS  Huang SL  Lee MK  Sun CK 《Optics letters》1999,24(20):1407-1409
Epilayers of packaged indium gallium nitride light-emitting diodes (LED's) are characterized by optical-beam-induced current (OBIC) and photoluminescence laser-scanning microscopy through two-photon excitation. Light scattering and absorption in the packaging material and the p-doped top layer of the LED's are greatly reduced as a result of employing a longer excitation wavelength, with energy that is less than the bandgap of the top p layer. Compared with single-photon OBIC, two-photon OBIC imaging not only exhibits superior image quality but also reveals more clearly the characteristics of the epilayers that are being focused on.  相似文献   

3.
We present a new quantitative phase microscopy technique, confocal diffraction phase microscopy, which provides quantitative phase measurements from localized sites on a sample with high sensitivity. The technique combines common-path interferometry with confocal microscopy in a transmission geometry. The capability of the technique for static imaging is demonstrated by imaging polystyrene microspheres and live HT29 cells, while dynamic imaging is demonstrated by quantifying the nanometer scale fluctuations of red blood cell membranes.  相似文献   

4.
We present and discuss the application of colloidal semiconductor quantum dots for diagnostic purposes, with special emphasis for cancer. We prepared and applied core-shell cadmium sulfide-cadmium hydroxide (CdS/Cd(OH)2) semiconductor quantum dots in aqueous medium. Tissue and cells labeling was evaluated by laser scanning confocal microscopy as well as by conventional fluorescence microscopy. The procedure presented in this work, shown to be a promising tool for fast, low-cost and precise cancer diagnostic protocols.  相似文献   

5.
A scanning tunneling microscopy study reveals the removal of P and In atoms at intrinsic surface sites of InP (110)-(1x1) through an electronic mechanism under ns-laser excitation. Femtosecond nonresonant ionization spectroscopy detects desorption of P and In atoms associated directly with the bond rupture, and shows their translational energies characteristic of electronic bong breaking. The rate of P-atom removal is 4 times higher than that of In-atom removal, revealing a prominent species-dependent effect of structural instability under electronic excitation on semiconductor surfaces.  相似文献   

6.
By the example of ZnSe crystals, the capabilities of two-photon confocal microscopy as a tool for obtaining “planar” maps of nonequilibrium charge-carrier lifetimes in semiconductor materials and for investigating other direct-gap semiconductors and semiconductor heterostructures are considered. It is shown that such maps with a depth step and an in-plane resolution of several microns can be obtained for distances from the surface up to 1 mm. This technique is used to visualize inhomogeneities in the crystals under study and to examine their structure and luminescence characteristics.  相似文献   

7.
共聚焦X射线荧光技术是一种无损的三维光谱分析技术,在材料,生物,矿物样品分析,考古,证物溯源等领域具有广泛应用。共聚焦X射线荧光谱仪的核心部件为两个多毛细管X光透镜。一个为多毛细管X光会聚透镜(PFXRL),其存在一后焦点,作用是把X光管所发出的发散X射线会聚成几十微米大小的高增益焦斑。另一透镜为多毛细管X光平行束透镜(PPXRL),其存在一几十微米大小前焦点,置于X射线能量探测器前端,其作用是接收特定区域的X射线荧光信号。在共聚焦X射线荧光谱仪中,PFXRL的后焦点与PPXRL的前焦点重合,所形成的区域称作探测微元。只有置于探测微元区域的样品能够被谱仪检测到,使样品与探测微元相对移动,逐点扫描,便能够对样品进行三维无损的X射线分析。探测微元的尺寸决定共聚焦X射线荧光谱仪的空间分辨率,因此精确测量谱仪的探测微元的尺寸是非常重要的。如图1所示,谱仪探测微元可以近似为椭球体,其尺寸可以用水平方向分辨率X, Y,和深度分辨率Z表示。目前,常采用金属细丝或金属薄膜通过刀口扫描的方法测量谱仪探测微元尺寸。为了精确的从三个维度测量探测微元尺寸,金属细丝直径要小于探测微元尺寸。金属细丝和探测微元都是数十微米级别的尺寸大小,很难把金属靠近探测微元。为了得到探测微元在不同X射线能量下尺寸变化曲线,要采用多种金属细丝测量。采用单个金属细丝依次测量比较耗费时间。采用金属薄膜可以很方便地测量探测微元的深度分辨率Z,但是当测量水平分辨率X, Y时,难以准确测量。为了解决以上谱仪探测微元测量中存在的问题,本文提出采用多种金属丝平行粘贴在硬纸片上作为样品用于快速测量探测微元尺寸。附有金属细丝的硬纸片靠近谱仪探测微元,可以将探测微元置于硬纸片所在平面。由于硬纸片与金属细丝在同一水平面,在谱仪摄像头的协助下,可以把金属细丝迅速的靠近探测微元。靠近探测微元后,在全自动三维样品台的协助下,金属细丝沿两个方向对探测微元分别进行一次二维扫描。通过对二维扫描数据的处理便可以获得探测微元尺寸随入射X射线能量变化曲线。采用此方法对实验室所搭建的共聚焦X射线荧光谱仪的探测微元进行了测量。  相似文献   

8.
Zakharov  V.  Stepanova  M.  Baranov  M.  Dubavik  A.  Kormilina  T.  Cherevkov  S.  Borodina  L.  Veniaminov  A. 《Optics and Spectroscopy》2018,125(5):765-768
Optics and Spectroscopy - Luminescent images of a few distinguishable alloyed semiconductor quantum dots obtained at room temperature using confocal scanning microscopy with spectral and temporal...  相似文献   

9.
Micrometre-thick uniform layers of a polymeric semiconductor (poly(3-hexylthiophene), P3HT) have been fabricated from solution by spray deposition making use of a commercial airbrush. Multi-scale characterization by optical microscopy and atomic force microscopy revealed the formation of smooth layers featuring reproducible patterns of spatially correlated micron-sized holes. This morphology was found to be uniform over the whole sample surface, on millimetre scale. On this micro-patterned P3HT layer an orthogonal solvent (i.e. a solvent which does not dissolve the P3HT) has been employed to deposit either by spin coating or by drop casting a second organic semiconductor. While spin-coated films exhibited nano-crystals of an alkylated perylene tetracarboxy diimide (PDI) preferentially grown into the micro-fabricated holes, drop-cast films displayed crystalline PDI fibres adsorbed on the patterned surface in random positions. This work was supported by the ESF-SONS2-SUPRAMATES project, the German Science Foundation (Mu 334/28-1), the Regione Emilia-Romagna PRIITT Nanofaber Net-Lab as well as the EU through the projects Marie Curie EST—SUPER (MEST-CT-2004-008128) and the RTN PRAIRIES (MRTN-CT-2006-035810).  相似文献   

10.
A semiconductor device, a microSD card, was measured by using two XRF instruments. 2D elemental images were obtained using a micro‐XRF system with a spatial resolution of 10 µm. Elemental distributions of the near‐surface region of the sample were clearly shown. Titanium was observed in the resin constituting the sample. Nickel and gold were observed on a terminal and localization of the sample. Elemental distribution of copper reflected the circuit structure of the measurement area that was in the neighborhood of the sample surface. Moreover, the elemental depth distributions of the sample were measured by using a confocal micro‐XRF instrument. The confocal micro‐XRF instrument was constructed in the laboratory with fine‐focus polycapillary x‐ray optics. The depth resolution of the developed spectrometer was 13.7 µm at an energy of Au Lβ (11.4 keV). The elemental images obtained at near‐surface by confocal micro‐XRF were the same as the results obtained from 2D micro‐XRF. However, different Cu images were obtained at a depth of several tens of micrometers. This indicates that microSD cards consist of a few different Cu‐circuit structure designs. The elemental depth distributions of each circuit structure of the semiconductor device were clearly shown by confocal micro‐XRF. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
戴岑  巩岩  张昊  李佃蒙  薛金来 《中国光学》2018,11(2):255-264
多层膜极紫外光刻掩模"白板"缺陷是制约下一代光刻技术发展的瓶颈之一,为提高对掩模"白板"上的膜层微结构缺陷的分辨能力,提出了一种微分干涉差共焦显微探测系统方案。基于标量衍射理论,计算了系统横向和轴向分辨率。利用MATLAB建模仿真,在数值孔径为0.65、工作波长为405 nm时,分析比较了微分干涉差共焦显微系统、传统显微系统和共焦显微系统的分辨率。结果表明微分干涉差共焦显微系统具有230 nm的横向分辨率和25 nm轴向台阶高度差的分辨能力(对应划痕等缺陷形式)。此外,仿真和分析了实际应用中探测器尺寸、样品轴向偏移等的影响,模拟分析了膜层微结构缺陷的探测,结果表明本系统可以探测200 nm宽、10 nm高的微结构缺陷,较另外两种系统有更好的探测能力。  相似文献   

12.
Photoelectron spectroscopy is one of the leading techniques in the study of solid surfaces. In particular, X-ray photoelectron spectroscopy (XPS) — also known as ESCA (electron spectroscopy for chemical analysis) — is extensively used in materials science. This paper discusses the advantages of coupling the soft X-ray continuum of synchrotron radiation with this technique (SXPS). The primary advantage of high surface sensitivity is illustrated with case studies of clean semiconductor surfaces and of the initial stages of formation of metal/semiconductor and semiconductor/semiconductor interfaces. The prospects for soft X-ray photoelectron microscopy are briefly discussed.  相似文献   

13.
共焦拉曼光谱技术可实现定量、无损、无需标记的样品微区“分子结构特征和物质组成信息”成像,被广泛应用于生物医学、物理化学以及材料科学等领域。由于共焦拉曼系统采用“点”激发和“点”探测的探测机制,且拉曼散射光谱信号微弱,导致成像所需时间可长达数小时甚至数十小时;测量过程中系统极易受环境变化、空气扰动等因素影响产生漂移,造成被测样品离焦,从而导致成像质量不稳定。针对现有共焦拉曼系统对样品定焦能力不足、样品易产生离焦误差、系统漂移大等问题,本文提出了一种基于双边拟合的高稳定性共焦拉曼光谱定焦方法。该方法首先对共焦拉曼光谱强度轴向响应曲线两侧对样品离焦敏感的数据区间分别进行线性拟合,得到两条拟合直线方程;然后,将所得的两条直线方程相减得到新的差分直线;最后,通过差分直线的过零点位置确定系统焦平面位置,实现了被测样品的高精度定焦,消除了离焦对系统测量结果的影响。以单晶硅表面同一位置,轴向扫描步距100 nm,进行60次重复定焦实验,实验获得的重复定焦极差为80.2 nm,说明系统具有良好的抗漂移能力。对周期5 μm的竖条栅格标准原子力台阶样品进行拉曼mapping成像测试,结果表明在长时间的成像过程中,和无定焦功能的图像相比,该方法获得的竖条栅格图像更清晰、边缘更锐利、信噪比较好。仿真分析和实验结果表明:提出的基于双边拟合共焦拉曼光谱探测方法可以提高系统的定焦准确度,抑制干扰因素导致的系统离焦对成像质量的影响,进而确保了系统探测的稳定性和成像分辨力,是一种自动定焦、抗漂移的拉曼光谱成像方法。  相似文献   

14.
We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface.  相似文献   

15.
Ballistic electron-emission spectroscopy (BEES) and microscopy (BEEM) have been carried out on epitaxial metal/semiconductor interfaces and on epitaxial nanostructures in UHV and at low temperatures. We describe how the band structure of the metal may lead to pronounced focusing of the hot carrier beam injected by the scanning tunneling microscope (STM) tip, thereby greatly enhancing the spatial resolution, such that spectroscopy at buried point defects becomes possible. The strain fields of Ge quantum dots buried underneath an epitaxial silicide film on a Si(100) substrate are found to induce a characteristic clustering of linear defects at the metal/semiconductor interface. The Schottky barrier height lowering associated with these defects allows for an easy identification of buried dots, despite the many mechanisms leading to contrast in BEEM images.  相似文献   

16.
The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III).  相似文献   

17.
Direction-sensitive displacement measurements at diffraction-limited spatial resolution are demonstrated with an interferometric optical-feedback semiconductor laser confocal imaging system. Subwavelength axial movements of the reflecting sample, including the directions of motion, are detected within the depth of field. A comparison of theory and actual instrument performance is presented.  相似文献   

18.
《Current Applied Physics》2018,18(11):1300-1305
The tunable electronic performance of the solution-processed semiconductor metal oxide is of great significance for the printing electronics. In current work, transparent thin-film transistors (TFTs) with indium-zinc oxide (IZO) were fabricated as active layer by a simple eco-friendly aqueous route. The aqueous precursor solution is composed of water without any other organic additives and the IZO films are amorphous revealed by the X-ray diffraction (XRD). With systematic studies of atomic force microscopy (AFM), X-ray photoemission spectroscopy (XPS) and the semiconductor property characterizations, it was revealed that the electrical performance of the IZO TFTs is dependent on the concentration of precursor solution. As well, the optimum preparation process was obtained. The concentrations induced the regulation of the electronic performance was clearly demonstrated with a proposed mechanism. The results are expected to be beneficial for development of solution-processed metal oxide TFTs.  相似文献   

19.
弹道电子发射显微术及其应用   总被引:1,自引:0,他引:1  
商广义  裘晓辉 《物理》1997,26(5):300-304
弹道电子发射显微术能够对金属/半导体等界面体系进行直接,实时及无损的探测,并且具有纳米级空间分辨率,文章介绍了BEEM的基本原理,关键技术及其应用,并给出了有关实验结果。  相似文献   

20.
在传统共聚焦显微技术的基础上,图像扫描显微技术使用面阵探测器来代替单点探测器,结合虚拟数字针孔并利用像素重定位和解卷积图像重构算法将传统宽场显微镜的分辨率提高一倍,实现了高信噪比的超分辨共焦成像.但是,由于采用逐点扫描的方式,三维成像速度相对较慢,限制了其在活体样品成像中的应用.为了进一步提高图像扫描显微术的成像速度,本文提出了一种基于双螺旋点扩散函数工程的多焦点图像扫描显微成像方法和系统.在照明光路中,利用高速数字微镜器件产生周期分布的聚焦点阵对样品进行并行激发和快速二维扫描;在探测光路中,利用双螺旋相位片将激发点荧光信号的强度分布转换为双螺旋的形式;最终,利用后期数字重聚焦处理,从单次样品扫描数据中重构出多个样品层的超分辨宽场图像.在此基础上,利用搭建的系统分别对纤维状肌动蛋白和海拉细胞线粒体进行成像实验,证明了该方法的超分辨能力和快速三维成像能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号