首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
裂解色谱法研究新型耐热高聚物1.酚酞型聚芳醚酮   总被引:1,自引:0,他引:1  
洪维  陈天禄  王顺忠  袁雅桂  刘鑫业 《色谱》1987,5(5):283-286
 ]本文用管炉裂解色谱法对主链内含酞侧基的新型结构的聚芳醚酮(PEK-C)的裂解行为进行研究。主要裂解碎片有CO、CO2、低碳烃类、苯、苯酚、二苯醚及氯苯等。不同单体配料比中二氯二苯酮的摩尔比愈高,则端基裂片氯苯的含量愈大。  相似文献   

2.
离子性聚合物的合成方法主要集中于通过一些含芳环聚合物的大分子反应,引入不同的离子基。如聚苯乙烯、聚芳醚砜、聚芳醚酮的磺化反应及聚苯醚的羧化反应等。但伴随大分子反应,聚合物要发生严重的化学降解,并且引入离子基团数目也不易控制。 本工作将酚酞啉引入酚酞型聚芳醚砜,发现在弱碱K_2CO_3体系中酚酞啉仍能保持一定的反应活性,且不至于发生交联反应。通过与酚酞的共聚反应可方便地控制聚合物的羧化度。  相似文献   

3.
4.
5.
从4,4’-二氟三苯二酮(DFTBDK)和酚酞出发,利用"拟高稀(pseudo high dillution)"技术,一步法制备酚酞聚芳醚酮酮环状齐聚物(c-PEKK-C),成环率78%。基质辅助激光解吸电离飞行时间质谱MALDI-TOF MS数据表明,聚合产物系聚合度为n=2~8的环状低聚物,其中以二、三聚体为主要成分(占环化产物的85%)。运用J-S高分子环化理论证实4,4’-二氟三苯二酮的单体结构有利于形成环状化合物。以4,4’-联苯二酚钾盐为催化剂,在300~350℃范围内,N2气保护下,环状齐聚物进行熔融开环聚合反应得到相应的线性高相对分子质量酚酞聚芳醚酮酮(ROP-PEKK-C),GPC测得其Mw为1.2×105。  相似文献   

6.
7.
超支化聚芳醚酮(HBPEKs)由于具有独特的理化特性和潜在的应用价值近年来备受关注.本文综述了HBPEKs最新的研究进展.HBPEKs可以由单单体和双单体方法来制备,文中重点介绍了HBPEKs的一些经典合成方法;同时,对HBPEKs的结构性能、表征手段和应用等进行了详细的描述;最后,指出了HBPEKs研究过程中需要解决的问题.  相似文献   

8.
随着高新技术的发展,对高性能特种工程塑料的需求日益剧增,对材料的综合性能特别是耐热性提出了更高的要求。聚芳醚酮是一类综合性能优异的高性能工程塑料,研究开发耐热等级更高的新型聚醚酮已成为高分子材料与工程领域的研究热点之一[1,2]。二氮杂萘联苯酮酚是本...  相似文献   

9.
本文用高分辨裂解色谱-质谱法研究了磺化聚芳醚醚酮的热分解过程,分离和鉴定了主要热分解产物;考察了磺化度和温度对热解产物分布的影响。发现磺化聚芳醚醚酮有两个热分解阶段。用分步裂解并结合动力学分析,讨论了其热分解机理。  相似文献   

10.
利用双酚A型聚芳醚酮与联硼酸频哪醇酯在[Ir(COD)Cl]2和4,4'-二叔丁基-2,2'-联吡啶催化下反应,制备了新型含硼酸酯双酚A型聚芳醚酮,通过控制联硼酸频哪醇酯的投入量来实现硼酸酯的定量引入.再经过高碘酸钠作用得到含硼酸双酚A型聚芳醚酮,最后,通过高效Suzuki-Miyaura反应将偶氮定量引入到聚芳醚酮主链.利用核磁共振(1H NMR)确定了聚合物的结构,利用凝胶渗透色谱(GPC)确定了聚合物的分子量,利用差示扫描量热分析(DSC)和热失重分析(TGA)研究了聚合物的热性能,利用紫外-可见光谱(UVVis)研究了偶氮聚芳醚酮的光谱学性能.  相似文献   

11.
由3,3′-双(4-羟基苯基)苯并吡咯酮(HPP)和4,4′-二氟二苯酮经亲核缩聚合成聚芳醚酮(PEK-H),再经与环氧氯丙烷(ECH)的亲核取代反应,制得了一种含量可控的环氧侧基酚酞聚芳醚酮(PEK-HE)。 改变ECH的投料量,可调控环氧侧基在聚合物中的含量。 采用FTIR、1H NMR和TGA等技术对聚合物进行了结构表征与性能测试,并考察了经自固化后聚合物涂膜的性能。 涂膜热稳定性较固化前明显提高,5%热失重温度均在450 ℃以上。 涂膜具有优异的热性能和机械性能:耐温(350±20) ℃;冲击强度高于100 kg·cm。  相似文献   

12.
李昕  赵欣  陈翠仙  李继定 《高分子学报》2007,(11):1074-1079
采用耐高温工程塑料——含酚酞侧基的聚芳醚砜(PES-C)为膜材料,草酸和聚乙二醇为添加剂,N,N-二甲基乙酰胺为溶剂,并利用改进的凝胶动力学实验装置和方法,使之能真实地再现不同膜孔结构生长及发展演化的过程,借助相关软件对图像进行处理,考察了添加剂、聚合物浓度对铸膜液凝胶速度的影响,对酚酞基聚芳醚砜非对称膜的凝胶过程的动力学进行研究.结果表明,动力学图像与最终膜结构有很好的一致性,凝胶动力学方面得到了与Strathman等不同的研究结果,发现凝胶前锋位移的平方与时间不是线性关系,凝胶动力学过程不能简单地用Fick扩散定律来描述.  相似文献   

13.
含环氧端基酚酞聚芳醚酮E-PEK的合成及表征   总被引:3,自引:1,他引:3  
由酚酞和4,4′-二氯二苯酮经亲核缩聚制得了一系列不同分子量的含—OK端基的聚醚酮低聚物,将其与环氧氯丙烷反应得到了分子量为1000~8000的含环氧端基聚芳醚酮(E-PEK)。用IR和~1H NMR表征了E-PEK的分子链结构,测定了T_g、溶解性和熔融粘度。研究了E-PEK/DDE体系的固化,固化后树脂的T_(g∞)=183~215℃,与低聚物的初始分子量有关。  相似文献   

14.
新型含氟聚芳醚酮的合成与表征   总被引:10,自引:0,他引:10  
聚芳醚酮具有很高的热稳定性和优良的电性能及机械性能 ,已经被广泛应用于宇航、电子及核能等高技术领域 [1] .氟元素的引入可以降低材料介电常数、折光指数和吸水率 ,提高热稳定性、溶解性和阻燃性 ,增加材料透明度 ,使这类聚合物在光电子、光学和微电子等应用领域的研究倍受关注 [2~ 4 ] .本文在合成含三氟甲基苯侧基的聚芳醚酮 [5] 的基础上 ,设计并合成了新型的含氟量更高的单体和聚合物 ,并对其性能进行了初步研究 .1 实验部分1 .1 试剂与仪器  [3,5 -二 (三氟甲基 ) ]苯代对苯醌 (自制 ) ;锌粉 ,A.R.级 ,天津化学试剂一厂产品 ;…  相似文献   

15.
聚醚醚酮 (PEEK)自英国 ICI公司开发并工业化以来 ,由于其优异的性能已在机械、航天等领域得到广泛应用 .但 PEEK的 Tg 只有 41 6K,影响了使用范围 .因此其它聚芳醚酮类聚合物相继被开发出来 .但这些聚芳醚酮的主链结构大都为全对位连接 ,使其熔点较高以至加工难度增大 .如果在聚合物主链结构中引入间位结构 ,则可在对玻璃化转变温度影响较小的情况下降低熔点来改善加工条件[1,2 ] .新型间位聚醚酮醚酮酮 (PEKEKm K)是其中一种 ,其玻璃化转变温度 Tg 为 41 7K,Tm 为 5 82 K.无论熔体结晶、冷结晶和溶剂诱变结晶 ,PEKEKm K都只出…  相似文献   

16.
新型可溶性聚芳醚酮的合成与表征   总被引:2,自引:1,他引:1  
聚芳醚酮是一类具有独特的耐热性、耐疲劳性、耐辐射性、化学稳定性、阻燃性和介电性等诸多优异性能的工程塑料 ,广泛应用于航天、军事、电子、信息、核能和精密仪器等领域[1,2 ] .具有不同性质并有不同应用特性的聚芳醚酮的研究已有报道 [3~ 8] .将甲基、苯基和叔丁基等不同取代基引入到聚芳醚酮中可提高溶解性 ,改善加工性能 ,其中引入一些功能型侧基也可实现聚芳醚酮的功能化 .我们合成了一种含甲苯取代基的新型聚芳醚酮 ,大侧基的引入含影响到玻璃化转变温度 ( Tg)、结晶性和介电性能 ,可改善溶解性、成膜性及加工流动性等诸多性能 .…  相似文献   

17.
以带酞基聚芳醚酮(PEKM)为膜材料,用相转换法制备了PEK—C不对称超滤膜,研究了铸膜液的主要组分对膜的孔结构与超滤性能的影响。  相似文献   

18.
聚芳醚醚酮和磺化聚芳醚醚酮的热分解动力学   总被引:5,自引:1,他引:5  
 用热重法(TG)研究了聚芳醚醚酮(PEEK)和磺化改性的聚芳醚醚酮(S-PEEK)的热分解动力学,计算了热分解动力学参数,结果表明PEEK及S-PEEK的热分解符合无规引发裂解模型。进一步考察了磺化对PEEK热分解的影响,结合温度程序裂解色谱-质谱结果,探讨了S-PEEK的TG曲线上呈现二个失重台阶的意义。  相似文献   

19.
用热重法(TG)研究了聚芳醚醚酮(PEEK)和磺化改性的聚芳醚醚酮(S-PEEK)的热分解动力学,计算了热分解动力学参数,结果表明PEEK及S-PEEK的热分解符合无规引发裂解模型。进一步考察了磺化对PEEK热分解的影响,结合温度程序裂解色谱-质谱结果,探讨了S-PEEK的TG曲线上呈现二个失重台阶的意义。  相似文献   

20.
以AlCl3/DCE/DMF为溶剂体系,采用低温溶液缩聚合成全对位聚醚砜醚酮酮(p-PESEKK)树脂,研究了端基、分子量及溶剂体系对树脂的溶剂诱导结晶行为的影响.结果表明,在AlCl3/DCE/DMF的良溶剂中制得的p-PESEKK为低结晶度聚合物,由于分子链中四面体结构砜基的影响,树脂熔融后很难再结晶;随脂肪链端基碳原子数的增加,溶剂诱导结晶速度逐渐下降,结晶度降低,与主链结构相同的端基更有利于结晶的形成;高分子量的p-PESEKK端基的比例相对较小,有利于溶剂诱导结晶.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号