首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A family ℱ of cuts of an undirected graphG=(V, E) is known to have the weak MFMC-property if (i) ℱ is the set ofT-cuts for someTV with |T| even, or (ii) ℱ is the set of two-commodity cuts ofG, i.e. cuts separating any two distinguished pairs of vertices ofG, or (iii) ℱ is the set of cuts induced (in a sense) by a ring of subsets of a setTV. In the present work we consider a large class of families of cuts of complete graphs and prove that a family from this class has the MFMC-property if and only if it is one of (i), (ii), (iii).  相似文献   

2.
D.R. Woodall [7] introduced the concept of the binding number of a graphG, bind (G), and proved that bind(G)≦(|V(G)|−1)/(|V(G)|−ρ(G)). In this paper, some properties of a graph with bind(G)=(|V(G)|−1)/(|V(G)|−ρ(G)) are given, and the binding number of some line graphs and total graphs are determined.  相似文献   

3.
The chromatic number of the product of two 4-chromatic graphs is 4   总被引:1,自引:0,他引:1  
For any graphG and numbern≧1 two functionsf, g fromV(G) into {1, 2, ...,n} are adjacent if for all edges (a, b) ofG, f(a)g(b). The graph of all such functions is the colouring graph ℒ(G) ofG. We establish first that χ(G)=n+1 implies χ(ℒ(G))=n iff χ(G ×H)=n+1 for all graphsH with χ(H)≧n+1. Then we will prove that indeed for all 4-chromatic graphsG χ(ℒ(G))=3 which establishes Hedetniemi’s [3] conjecture for 4-chromatic graphs. This research was supported by NSERC grant A7213  相似文献   

4.
IfG andH are graphs, let us writeG→(H)2 ifG contains a monochromatic copy ofH in any 2-colouring of the edges ofG. Thesize-Ramsey number r e(H) of a graphH is the smallest possible number of edges a graphG may have ifG→(H)2. SupposeT is a tree of order |T|≥2, and lett 0,t 1 be the cardinalities of the vertex classes ofT as a bipartite graph, and let Δ(T) be the maximal degree ofT. Moreover, let Δ0, Δ1 be the maxima of the degrees of the vertices in the respective vertex classes, and letβ(T)=T 0Δ0+t 1Δ1. Beck [7] proved thatβ(T)/4≤r e(T)=O{β(T)(log|T|)12}, improving on a previous result of his [6] stating thatr e(T)≤Δ(T)|T|(log|T|)12. In [6], Beck conjectures thatr e(T)=O{Δ(T)|T|}, and in [7] he puts forward the stronger conjecture thatr e(T)=O{β(T)}. Here, we prove the first of these conjectures, and come quite close to proving the second by showing thatr e(T)=O{β(T)logΔ(T)}.  相似文献   

5.
LetV be a set ofn elements. The set of allk-subsets ofV is denoted . Ak-hypergraph G consists of avertex-set V(G) and anedgeset , wherek≥2. IfG is a 3-hypergraph, then the set of edges containing a given vertexvεV(G) define a graphG v . The graphs {G v νvεV(G)} aresubsumed byG. Each subsumed graphG v is a graph with vertex-setV(G) − v. They can form the set of vertex-deleted subgraphs of a graphH, that is, eachG v Hv, whereV(H)=V(G). In this case,G is a hypergraphic reconstruction ofH. We show that certain families of self-complementary graphsH can be reconstructed in this way by a hypergraphG, and thatG can be extended to a hypergraphG *, all of whose subsumed graphs are isomorphic toH, whereG andG * are self-complementary hypergraphs. In particular, the Paley graphs can be reconstructed in this way. This work was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada.  相似文献   

6.
A variation in the classical Turan extrernal problem is studied. A simple graphG of ordern is said to have propertyPk if it contains a clique of sizek+1 as its subgraph. Ann-term nonincreasing nonnegative integer sequence π=(d1, d2,⋯, d2) is said to be graphic if it is the degree sequence of a simple graphG of ordern and such a graphG is referred to as a realization of π. A graphic sequence π is said to be potentiallyP k-graphic if it has a realizationG having propertyP k . The problem: determine the smallest positive even number σ(k, n) such that everyn-term graphic sequence π=(d1, d2,…, d2) without zero terms and with degree sum σ(π)=(d 1+d 2+ …+d 2) at least σ(k,n) is potentially Pk-graphic has been proved positive. Project supported by the National Natural Science Foundation of China (Grant No. 19671077) and the Doctoral Program Foundation of National Education Department of China.  相似文献   

7.
A pathP in a graphG is said to beextendable if there exists a pathP’ inG with the same endvertices asP such thatV(P)⊆V (P’) and |V(P’)|=|V(P)|+1. A graphG ispath extendable if every nonhamiltonian path inG is extendable. We investigate the extent to which known sufficient conditions for a graph to be hamiltonian-connected imply the extendability of paths in the graph. Several theorems are proved: for example, it is shown that ifG is a graph of orderp in which the degree sum of each pair of non-adjacent vertices is at leastp+1 andP is a nonextendable path of orderk inG thenk≤(p+1)/2 and 〈V (P)〉≅K k orK k e. As corollaries of this we deduce that if δ(G)≥(p+2)/2 or if the degree sum of each pair of nonadjacent vertices inG is at least (3p−3)/2 thenG is path extendable, which strengthen results of Williamson [13].  相似文献   

8.
LetG=(V,E) be a graph with an initial signs(v)∈{±1} for every vertexvV. When a certexv becomesactive, it resets its sign tos′(v) which is the sign of the majority of its neighbors(s′(v)=1 if there is a tie).G is in astable state if,s′(v) for allvV. We show that for every graphG=(V,E) and every initial signs, there is a sequencev 1,v 2,...,v r of vertices ofG, in which no vertex appears more than once, such that ifv i becomes active at timei, (1≤ir), then after theser stepsG reaches a stable state. This proves a conjecture of Miller. We also consider some generalizations to directed graphs with weighted edges.  相似文献   

9.
For a graphG let ℒ(G)=Σ{1/k contains a cycle of lengthk}. Erdős and Hajnal [1] introduced the real functionf(α)=inf {ℒ (G)|E(G)|/|V(G)|≧α} and suggested to study its properties. Obviouslyf(1)=0. We provef (k+1/k)≧(300k logk)−1 for all sufficiently largek, showing that sparse graphs of large girth must contain many cycles of different lengths.  相似文献   

10.
Let χ t (G) and †(G) denote respectively the total chromatic number and maximum degree of graphG. Yap, Wang and Zhang proved in 1989 that ifG is a graph of orderp having †(G)≥p−4, then χ t (G≤Δ(G)+2. Hilton has characterized the class of graphG of order 2n having †(G)=2n−1 such that χ t (G=Δ(G)+2. In this paper, we characterize the class of graphsG of order 2n having †(G)=2n−2 such that χ t (G=Δ(G)+2 Research supported by National Science Council of the Republic of China (NSC 79-0208-M009-15)  相似文献   

11.
It is shown that a graphG has all matchings of equal size if and only if for every matching setλ inG, G\V(λ) does not contain a maximal open path of odd length greater than one, which is not contained in a cycle. (V(λ) denotes the set of vertices incident with some edge ofλ.) Subsequently edge-coverings of graphs are discussed. A characterization is supplied for graphs all whose minimal covers have equal size.  相似文献   

12.
Let G = (V,E) be a graph and let S V. The set S is a packing in G if the vertices of S are pairwise at distance at least three apart in G. The set S is a dominating set (DS) if every vertex in VS is adjacent to a vertex in S. Further, if every vertex in VS is also adjacent to a vertex in VS, then S is a restrained dominating set (RDS). The domination number of G, denoted by γ(G), is the minimum cardinality of a DS of G, while the restrained domination number of G, denoted by γr(G), is the minimum cardinality of a RDS of G. The graph G is γ-excellent if every vertex of G belongs to some minimum DS of G. A constructive characterization of trees with equal domination and restrained domination numbers is presented. As a consequence of this characterization we show that the following statements are equivalent: (i) T is a tree with γ(T)=γr(T); (ii) T is a γ-excellent tree and TK2; and (iii) T is a tree that has a unique maximum packing and this set is a dominating set of T. We show that if T is a tree of order n with ℓ leaves, then γr(T) ≤ (n + ℓ + 1)/2, and we characterize those trees achieving equality.  相似文献   

13.
Closed Separator Sets   总被引:1,自引:0,他引:1  
A smallest separator in a finite, simple, undirected graph G is a set SV (G) such that GS is disconnected and |S|=κ(G), where κ(G) denotes the connectivity of G. A set S of smallest separators in G is defined to be closed if for every pair S,TS, every component C of GS, and every component S of GT intersecting C either X(C,D) := (V (C) ∩ T) ∪ (TS) ∪ (SV (D)) is in S or |X(C,D)| > κ(G). This leads, canonically, to a closure system on the (closed) set of all smallest separators of G. A graph H with is defined to be S-augmenting if no member of S is a smallest separator in GH:=(V (G) ∪ V (H), E(G) ∪ E(H)). It is proved that if S is closed then every minimally S-augmenting graph is a forest, which generalizes a result of Jordán. Several applications are included, among them a generalization of a Theorem of Mader on disjoint fragments in critically k-connected graphs, a Theorem of Su on highly critically k-connected graphs, and an affirmative answer to a conjecture of Su on disjoint fragments in contraction critically k-connected graphs of maximal minimum degree.  相似文献   

14.
The above authors [2] and S. Stahl [3] have shown that if a graphG is the 2-amalgamation of subgraphsG 1 andG 2 (namely ifG=G 1G 2 andG 1G 2={x, y}, two distinct points) then the orientable genus ofG,γ(G), is given byγ(G)=γ(G 1)+γ(G 2)+ε, whereε=0,1 or −1. In this paper we sharpen that result by giving a means by whichε may be computed exactly. This result is then used to give two irreducible graphs for each orientable surface.  相似文献   

15.
LetG be a finite group of even order, having a central element of order 2 which we denote by −1. IfG is a 2-group, letG be a maximal subgroup ofG containing −1, otherwise letG be a 2-Sylow subgroup ofG. LetH=G/{±1} andH=G/{±1}. Suppose there exists a regular extensionL 1 of ℚ(T) with Galois groupG. LetL be the subfield ofL 1 fixed byH. We make the hypothesis thatL 1 admits a quadratic extensionL 2 which is Galois overL of Galois groupG. IfG is not a 2-group we show thatL 1 then admits a quadratic extension which is Galois over ℚ(T) of Galois groupG and which can be given explicitly in terms ofL 2. IfG is a 2-group, we show that there exists an element α ε ℚ(T) such thatL 1 admits a quadratic extension which is Galois over ℚ(T) of Galois groupG if and only if the cyclic algebra (L/ℚ(T).a) splits. As an application of these results we explicitly construct several 2-groups as Galois groups of regular extensions of ℚ(T).  相似文献   

16.
Given a graphG onn vertices and a total ordering ≺ ofV(G), the transitive orientation ofG associated with ≺, denotedP(G; ≺), is the partial order onV(G) defined by settingx<y inP(G; ≺) if there is a pathx=x 1 x 2x r=y inG such thatx 1x j for 1≦i<jr. We investigate graphsG such that every transitive orientation ofG contains 2 no(n 2) relations. We prove that almost everyG n,p satisfies this requirement if , but almost noG n,p satisfies the condition if (pn log log logn)/(logn log logn) is bounded. We also show that every graphG withn vertices and at mostcn logn edges has some transitive orientation with fewer than 2 nδ(c)n 2 relations. Partially supported by MCS Grant 8104854.  相似文献   

17.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then G @ Bp(3){G\cong B_p(3)} or C p (3). Also if Γ(G) = Γ(B 3(3)), then G @ B3(3), C3(3), D4(3){G\cong B_3(3), C_3(3), D_4(3)}, or G/O2(G) @ Aut(2B2(8)){G/O_2(G)\cong {\rm Aut}(^2B_2(8))}. As a corollary, the main result of the above paper is obtained.  相似文献   

18.
. Let d(D) (resp., d(G)) denote the diameter and r(D) (resp., r(G)) the radius of a digraph D (resp., graph G). Let G×H denote the cartesian product of two graphs G and H. An orientation D of G is said to be (r, d)-invariant if r(D)=r(G) and d(D)=d(G). Let {T i }, i=1,…,n, where n≥2, be a family of trees. In this paper, we show that the graph ∏ i =1 n T i admits an (r, d)-invariant orientation provided that d(T 1)≥d(T 2)≥4 for n=2, and d(T 1)≥5 and d(T 2)≥4 for n≥3. Received: July 30, 1997 Final version received: April 20, 1998  相似文献   

19.
Letcc(G) (resp. cp(G)) be the least number of complete subgraphs needed to cover (resp. partition) the edges of a graphG. We present bounds on max {cc(G)+cc(Ḡ)}, max {cp(G)+cp(Ḡ)}, max {cc(G)cc(Ḡ)} and max {cp(G)cp(Ḡ)} where the maxima are taken over all graphsG onn vertices and Ḡ is the complement ofG inK n . Several related open problems are also given.  相似文献   

20.
The total graph T(G) of a multigraph G has as its vertices the set of edges and vertices of G and has an edge between two vertices if their corresponding elements are either adjacent or incident in G. We show that if G has maximum degree Δ(G), then T(G) is (2Δ(G) − 1)-choosable. We give a linear-time algorithm that produces such a coloring. The best previous general upper bound for Δ(G) > 3 was , by Borodin et al. When Δ(G) = 4, our algorithm gives a better upper bound. When Δ(G)∈{3,5,6}, our algorithm matches the best known bound. However, because our algorithm is significantly simpler, it runs in linear time (unlike the algorithm of Borodin et al.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号