首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative salience of the pitch components of a two-tone dichotic chord is invariant with respect to the relative intensity of the two tones over a wide range of interaural intensity differences [R. Efron and E. W. Yund, J. Acoust, Soc. Am. 889--898 (1976)]. According to a recently developed model, the range of intensity independence is limited by the bone-conducted energy from the more intense tone [E. W. Yund and R. Efron, J. Acoust. Soc. Am. 62, 607--617 (1977)]. The model predicts that a decrease in bone conduction such as the one achieved by using insertion earphones, must increase the range of intensity independence. This prediction is confirmed.  相似文献   

2.
When all of the components in a harmonic complex tone are shifted in frequency by delta f, the pitch of the complex shifts roughly in proportion to delta f. For tones with a small number of components, the shift is usually somewhat larger than predicted from pitch theories, which has been attributed to the influence of combination tones [Smoorenburg, J. Acoust. Soc. Am. 48, 924-941 (1970)]. Experiment 1 assessed whether combination tones influence the pitch of complex tones with more than five harmonics, by using noise to mask the combination tones. The matching stimulus was a harmonic complex. Test complexes were bandpass filtered with passbands centered on harmonic numbers 5 (resolved), 11 (intermediate), or 16 (unresolved) and fundamental frequencies (FOs) were 100, 200, or 400 Hz. For the intermediate and unresolved conditions, the matching stimuli were filtered with the same passband to minimize differences in the excitation patterns of the test and matching stimuli. For the resolved condition, the matching stimulus had a passband centered above that of the test stimulus, to avoid common partials. For resolved and intermediate conditions, pitch shifts were observed that could generally be predicted from the frequencies of the partials. The shifts were unaffected by addition of noise to mask combination tones. For the unresolved condition, no pitch shift was observed, which suggests that pitch is not based on temporal fine structure for stimuli containing only high unresolved harmonics. Experiment 2 used three-component complexes resembling those of Schouten [J. Acoust. Soc. Am. 34, 1418-1424 (1962)]. Nominal harmonic numbers were 3, 4, 5 (resolved), 8, 9, 10 (intermediate), or 13, 14, 15 (unresolved) and F0s were 50, 100, 200, or 400 Hz. Clear shifts in the matches were found for all conditions, including unresolved. For the latter, subjects may have matched the "center of gravity" of the excitation patterns of the test and matching stimuli.  相似文献   

3.
Brief complex tone bursts with fundamental frequencies (F0s) of 100, 125, 166.7, and 250 Hz were bandpass filtered between the 22nd and 30th harmonics, to produce waveforms with five regularly occurring envelope peaks ("pitch pulses") that evoked pitches associated with their repetition period. Two such tone bursts were presented sequentially and separated by a silent interval of two periods (2/F0). When the relative phases of the two bursts were varied, such that the interpulse interval (IPI) between the last pulse of the first burst and the first pulse of the second burst was varied, the pitch of the whole sequence was little affected. This is consistent with previous results suggesting that the pitch integration window may be "reset" by a discontinuity. However, when the interval between the two bursts was filled with a noise with the same spectral envelope as the complex, variations in IPI had substantial effects on the pitch of the sequence. It is suggested that the presence of the noise causes the two tones bursts to appear continuous, hence, resetting does not occur, and the pitch mechanism is sensitive to the phase discontinuity across the silent interval.  相似文献   

4.
Terhardt [J. Acoust. Soc. Am. 55, 1061-1069 (1974)] postulated a pitch perception model wherein a learning stage constitutes an integral part: it is only repeated exposure to patterns of spectral pitch that will generate the percept of virtual pitch (i.e., the residue). Two examples, one clinical and one musical, are cited to support the idea that perception of the pitch of complex tones represents a case of pattern perception which is acquired with experience.  相似文献   

5.
It is unclear whether the perceptual segregation of a mistuned harmonic from a periodic complex tone depends specifically on harmonic relations between the other components. A procedure used previously for harmonic complexes [W. M. Hartmann et al., J. Acoust. Soc. Am. 88, 1712-1724 (1990)] was adapted and extended to regular inharmonic complexes. On each trial, subjects heard a 12-component complex followed by a pure tone in a continuous loop. In experiment 1, a mistuning of +/- 4% was applied to one of the components 2-11. The complex was either harmonic, frequency shifted, or spectrally stretched. Subjects adjusted the pure tone to match the pitch of the mistuned component. Near matches were taken to indicate segregation, and were almost as frequent in the inharmonic conditions as in the harmonic case. Also, small but consistent mismatches, pitch shifts, were found in all conditions. These were similar in direction and size to earlier findings for harmonic complexes. Using a range of mistunings, experiment 2 showed that the segregation of components from regular inharmonic complexes could be sensitive to mistunings of 1.5% or less. These findings are consistent with the proposal that aspects of spectral regularity other than harmonic relations can also influence auditory grouping.  相似文献   

6.
Periodicity pitch for complex tones has been quantitatively accounted for by a two-stage process of Fourier-frequency analysis subject to random errors and significant nonlinearities, followed by an harmonic pattern recognizer that makes an optimum probabilistic estimate of the fundamental period of musical and speech sounds. The theory predicts that periodicity pitch is a multimodal probabilistic function of a given stimulus. A clear and empirically supported distinction is made between limitations on the pitch mechanism caused by the stochastic nature of aural frequency representation and by the deterministic resolution bandwidths of aural frequency analysis. This model was developed earlier [J. L. Goldstein, J. Acoust. Soc. Am 54, 1496-1516 (1973)] to account for probabilistic data on pitch errors [A. J. M. Houtsma and J. L. Goldstein, J. Acoust. Soc. Am. 51, 520 (1972)] measured with periodic stimuli comprising two successive harmonics. This paper presents new predictions by the theory that were calculated, with computer simulation where needed, for known probabilistic pitch data from stimuli comprising three to six successive harmonics. Predicted pitch errors increase with increasing errors in estimating the frequencies of stimulus harmonics and decrease as more harmonics are added to the stimulus. Optimum processor theory fully accounts for the multicomponent pitch data on the basis of similar errors in estimating component stimulus frequencies as reported earlier, thus providing further evidence for the optimum probabilistic basis of aural signal processing in pitch of complex tones.  相似文献   

7.
Chotiros and Isakson [J. Acoust. Soc. Am. 116(4), 2011-2022 (2004)] recently proposed an extension of the Biot-Stoll model for poroelastic sediments that makes predictions for compressional wave speed and attenuation, which are in much better accord with the experimental measurements of these quantities extant in the literature than either those of the conventional Biot-Stoll model or the rival model of Buckingham [J. Acoust. Soc. Am. 108(6), 2796-2815 (2000)]. Using a local minimizer, the Nelder-Mead simplex method, it is shown that there are generally at least two choices of the Chotiros-Isakson parameters which produce good agreement with experimental measurements. Since one postulate of the Chotiros-Isakson model is that, due to the presence of air bubbles in the pore space, the pore fluid compressibility is greater than that of water, an alternative model based on a conjecture by Biot [J. Acoust. Soc. Am. 34(5), 1254-1264 (1962)], air bubble resonance, is considered. While this model does as well or better than the Chotiros-Isakson model in predicting measured values of wave speed and attenuation, the Rayleigh-Plesset theory of bubble oscillation casts doubt on its plausibility as a general explanation of large dispersion of velocity with respect to frequency.  相似文献   

8.
Huang and Holt [(2009). J. Acoust. Soc. Am. 125, 3983-3994] suggest that listeners may dynamically tune lexical tone perception via general auditory sensitivity to the mean f0 of the preceding context, effectively normalizing pitch differences across talkers. The present experiments further examine the effect using the missing-f0 phenomenon as a means of determining the level of auditory processing at which lexical tone normalization occurs. Speech contexts filtered to remove or mask low-frequency f0 energy elicited contrastive context effects. Central, rather than peripheral, auditory processes may be responsible for the context-dependence that has been considered to be lexical tone normalization.  相似文献   

9.
Thresholds were measured for the detection of 20-ms sinusoids, with frequencies 500, 4000, or 6500 Hz, presented in bursts of bandpass noise of the same duration and centered around the signal frequency. A range of noise levels from 35 to 80 dB SPL was used. Noise at different center frequencies was equated in terms of the total noise power in an assumed auditory filter centered on the signal frequency. Thresholds were expressed as the signal levels, relative to these noise levels, necessary for subjects to achieve 71% correct. For 500-Hz signals, thresholds were about 5 dB regardless of noise level. For 6500-Hz signals, thresholds reached a maximum of 14 dB at intermediate noise levels of 55-65 dB SPL. For 4000-Hz signals, a maximum threshold of 10 dB was observed for noise levels of 45-55 dB SPL. When the bandpass noises were presented continuously, however, thresholds for 6500-Hz, 20-ms signals remained low (about 1 dB) and constant across level. These results are similar to those obtained for the intensity discrimination of brief tones in bandstop noise [R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 76, 1369-1376 (1984); R. P. Carlyon and B. C. J. Moore, J. Acoust. Soc. Am. 79, 453-460 (1986)].  相似文献   

10.
For tilt angles smaller than the meridional ray coupling condition previously investigated [S. F. Morse et al., J. Acoust. Soc. Am. 103, 785-794 (1998)], flexural helical waves on cylindrical shells can significantly enhance the backscattering. These contributions are compared and modeled here for an empty cylinder. Experiments using tone bursts were performed on a tilted stainless steel shell to investigate the contributions caused by flexural leaky Lamb waves above the coincidence frequency of the shell. In some of the measurements the tone bursts were of sufficient duration to superpose helical wave contributions of successive circumnavigations, along with the meridional contribution near the critical tilt, to arrive at a quasi-steady-state backscattering amplitude for the cylinder. These measurements are compared with an approximate numerical partial-wave series solution and a ray theory as a function of the tilt angle. The data for ka = 20 follow the basic shape of the ray theory and the relevant features of the partial-wave model. They illustrate the importance of the interference of successive helical wave contributions. Measurements (also as a function of the tilt angle) using tone bursts that were sufficiently short to separate the earliest helical wave contribution from later contributions also support the ray theory.  相似文献   

11.
Training American listeners to perceive Mandarin tones has been shown to be effective, with trainees' identification improving by 21%. Improvement also generalized to new stimuli and new talkers, and was retained when tested six months after training [Y. Wang et al., J. Acoust. Soc. Am. 106, 3649-3658 (1999)]. The present study investigates whether the tone contrasts gained perceptually transferred to production. Before their perception pretest and after their post-test, the trainees were recorded producing a list of Mandarin words. Their productions were first judged by native Mandarin listeners in an identification task. Identification of trainees' post-test tone productions improved by 18% relative to their pretest productions, indicating significant tone production improvement after perceptual training. Acoustic analyses of the pre- and post-training productions further reveal the nature of the improvement, showing that post-training tone contours approximate native norms to a greater degree than pretraining tone contours. Furthermore, pitch height and pitch contour are not mastered in parallel, with the former being more resistant to improvement than the latter. These results are discussed in terms of the relationship between non-native tone perception and production as well as learning at the suprasegmental level.  相似文献   

12.
The perceptual fusion of harmonics is often assumed to result from the operation of a template mechanism that is also responsible for computing global pitch. This dual-role hypothesis was tested using frequency-shifted complexes. These sounds are inharmonic, but preserve a regular pattern of equal component spacing. The stimuli had a nominal fundamental (F0) frequency of 200 Hz (+/- 20%), and were frequency shifted either by 25.0% or 37.5% of F0. Three consecutive components (6-8) were removed and replaced with a sinusoidal probe, located at one of a set of positions spanning the gap. On any trial, subjects heard a complex tone followed by an adjustable pure tone in a continuous loop. Subjects were well able to match the pitch of the probe unless it corresponded with a position predicted by the spectral pattern of the complex. Peripheral factors could not account for this finding. In contrast, hit rates were not depressed for probes positioned at integer multiples of the F0(s) corresponding to the global pitch(es) of the complex, predicted from previous data [Patterson, J. Acoust. Soc. Am. 53, 1565-1572 (1973)]. These findings suggest that separate central mechanisms are responsible for computing global pitch and for the perceptual grouping of partials.  相似文献   

13.
Ciocca and Darwin [V. Ciocca and C. J. Darwin, J. Acoust. Soc. Am. 105, 2421-2430 (1999)] reported that the shift in residue pitch caused by mistuning a single harmonic (the fourth out of the first 12) was the same when the mistuned harmonic was presented after the remainder of the complex as when it was simultaneous, even though subjects were asked to ignore the pure-tone percept. The present study tried to replicate this result, and investigated the role of the presence of the nominally mistuned harmonic in the matching sound. Subjects adjusted a "matching" sound so that its pitch equaled that of a subsequent 90-ms complex tone (12 harmonics of a 155-Hz F0), whose mistuned (+/-3%) third harmonic was presented either simultaneously with or after the remaining harmonics. In experiment 1, the matching sound was a harmonic complex whose third harmonic was either present or absent. In experiments 2A and 2B, the target and matching sound had nonoverlapping spectra. Pitch shifts were reduced both when the mistuned component was nonsimultaneous, and when the third harmonic was absent in the matching sound. The results indicate a shorter than originally estimated time window for obligatory integration of nonsimultaneous components into a virtual pitch.  相似文献   

14.
The effect of a forward masker on the loudness of a target tone in close temporal proximity was investigated. Loudness matches between a target and a comparison tone at the same frequency were obtained for a wide range of target and masker levels. Contrary to the hypothesis by Scharf, Buus, and Nieder [J. Acoust. Soc. Am. 112, 807-810 (2002)], these matches could not be explained by an effect of the masker on the comparison loudness, which was measured by loudness matches between the comparison and a fourth tone separated in frequency from the comparison and the masker. The data thus demonstrate that a forward masker has an effect on the loudness of a proximal target. The results are compatible with the suggestion by Arieh and Marks [J. Acoust. Soc. Am. 114, 1550-1556 (2003)] that the masker triggers two processes. The data indicate that the effect of the slower-decaying process resulting in a reduction in the loudness of a following tone saturates at masker-target level differences of 10-20 dB. The faster-decaying process causing loudness enhancement or loudness decrement has the strongest effect at a masker-target level difference of approximately 30 dB. A model explaining this mid-difference hump is proposed.  相似文献   

15.
Recent improvements in the parabolic equation method are combined to extend this approach to a larger class of seismo-acoustics problems. The variable rotated parabolic equation [J. Acoust. Soc. Am. 120, 3534-3538 (2006)] handles a sloping fluid-solid interface at the ocean bottom. The single-scattering solution [J. Acoust. Soc. Am. 121, 808-813 (2007)] handles range dependence within elastic sediment layers. When these methods are implemented together, the parabolic equation method can be applied to problems involving variations in bathymetry and the thickness of sediment layers. The accuracy of the approach is demonstrated by comparing with finite-element solutions. The approach is applied to a complex scenario in a realistic environment.  相似文献   

16.
Comodulation masking release and the masking-level difference   总被引:1,自引:0,他引:1  
An experiment was performed to determine if the mechanism that mediates comodulation masking release (CMR) is associated with that used to improve detection by the masking-level difference (MLD). The experiment consisted of first improving detectability of a masked diotic tone burst by adding a synchronous noise band at another frequency region (CMR), and then measuring an MLD in the usual manner, by inverting the tone-burst signal to one ear. Results indicate that a substantial MLD can be measured for a signal whose detectability has already been improved by CMR. However, that MLD (9 dB) is smaller than that measured in random noise (14 dB). Put another way, a small CMR (4 dB) can be produced even when the detectability of a stimulus has already been improved due to the MLD. These data are in general agreement with those of Hall et al. [J. Acoust. Soc. Am. 83, 1839-1845 (1988)] and Schooneveldt and Moore [J. Acoust. Soc. Am. 85, 262-272 (1989)].  相似文献   

17.
When a test sound consisting of pure tones with equal intensities is preceded by a precursor sound identical to the test sound except for a reduction in the intensity of one tone, an auditory "enhancement" phenomenon occurs: In the test sound, the tone which was previously softer stands out perceptually. Here, enhancement was investigated using inharmonic sounds made up of five pure tones well resolved in the auditory periphery. It was found that enhancement can be elicited not only by increases in intensity but also by shifts in frequency. In both cases, when the precursor and test sounds are separated by a 500-ms delay, inserting a burst of pink noise during the delay has little effect on enhancement. Presenting the precursor and test sounds to opposite ears rather than to the same ear significantly reduces the enhancement resulting from increases in intensity, but not the enhancement resulting from shifts in frequency. This difference suggests that the mechanisms of enhancement are not identical for the two types of change. For frequency shifts, enhancement may be partly based on the existence of automatic "frequency-shift detectors" [Demany and Ramos, J. Acoust. Soc. Am. 117, 833-841 (2005)].  相似文献   

18.
The pitch detection algorithm proposed by Duifhuis, Willems, and Sluyter [J. Acoust. Soc. Am. 71, 1568-1580 (1982)] can be made more than 20 times faster by replacing the harmonic sieve procedure by the approximate common denominator procedure, the results differing only slightly.  相似文献   

19.
Psychophysical, basilar-membrane (BM), and single nerve-fiber tuning curves, as well as suppression of distortion-product otoacoustic emissions (DPOAEs), all give rise to frequency tuning patterns with stereotypical features. Similarities and differences between the behaviors of these tuning functions, both in normal conditions and following various cochlear insults, have been documented. While neural tuning curves (NTCs) and BM tuning curves behave similarly both before and after cochlear insults known to disrupt frequency selectivity, DPOAE suppression tuning curves (STCs) do not necessarily mirror these responses following either administration of ototoxins [Martin et al., J. Acoust. Soc. Am. 104, 972-983 (1998)] or exposure to temporarily damaging noise [Howard et al., J. Acoust. Soc. Am. 111, 285-296 (2002)]. However, changes in STC parameters may be predictive of other changes in cochlear function such as cochlear immaturity in neonatal humans [Abdala, Hear. Res. 121, 125-138 (1998)]. To determine the effects of noise-induced permanent auditory dysfunction on STC parameters, rabbits were exposed to high-level noise that led to permanent reductions in DPOAE level, and comparisons between pre- and postexposure DPOAE levels and STCs were made. Statistical comparisons of pre- and postexposure STC values at CF revealed consistent basal shifts in the frequency region of greatest cochlear damage, whereas thresholds, Q10dB, and tip-to-tail gain values were not reliably altered. Additionally, a large percentage of high-frequency lobes associated with third tone interference phenomena, that were exhibited in some data sets, were dramatically reduced following noise exposure. Thus, previously described areas of DPOAE interference above f2 may also be studied using this type of experimental manipulation [Martin et al., Hear. Res. 136, 105-123 (1999); Mills, J. Acoust. Soc. Am. 107, 2586-2602 (2002)].  相似文献   

20.
The experiment compared the pitches of complex tones consisting of unresolved harmonics. The fundamental frequency (F0) of the tones was 250 Hz and the harmonics were bandpass filtered between 5500 and 7500 Hz. Two 20-ms complex-tone bursts were presented, separated by a brief gap. The gap was an integer number of periods of the waveform: 0, 4, or 8 ms. The envelope phase of the second tone burst was shifted, such that the interpulse interval (IPI) across the gap was reduced or increased by 0.25 or 0.75 periods (1 or 3 ms). A "no shift" control was also included, where the IPI was held at an integer number of periods. Pitch matches were obtained by varying the F0 of a comparison tone with the same temporal parameters as the standard but without the shift. Relative to the no-shift control, the variations in IPI produced substantial pitch shifts when there was no gap between the bursts, but little effect was seen for gaps of 4 or 8 ms. However, for some conditions with the same IPI in the shifted interval, an increase in the IPI of the comparison interval from 4 to 8 ms (gap increased from 0 to 4 ms) changed the pitch match. The presence of a pitch shift suggests that the pitch mechanism is integrating information across the two tone bursts. It is argued that the results are consistent with a pitch mechanism employing a long integration time for continuous stimuli that is reset in response to temporal discontinuities. For a 250-Hz F0, an 8-ms IPI may be sufficient for resetting. Pitch models based on a spectral analysis of the simulated neural spike train, on an autocorrelation of the spike train, and on the mean rate of pitch pulses, all failed to account for the observed pitch matches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号