首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-stage ion mirror in a time-of-flight (TOF) mass spectrometer (MS) can perform first order velocity focusing of ions initially located at a start focal plane while second order velocity focusing can be achieved using a double-stage reflectron. The situation is quite different when an ion source extraction field is taken into account. In this case which is common in any practical matrix-assisted laser desorption/ionization (MALDI) TOF-MS a single-stage reflectron, for example, cannot perform velocity focusing at all. In this paper an exact, analytic solution for an electric field inside a one-dimensional reflectron has been found to achieve universal temporal focusing of ions having an initial velocity distribution. The general solution is valid for arbitrary electric field distributions in the upstream (from the ion source to the reflectron) and downstream (from the reflectron to an ion detector) regions and in a decelerating part of the reflectron of a reflectron TOF mass spectrometer. The results obtained are especially useful for designing MALDI reflectron TOF mass spectrometers in which the initial velocity distribution of MALDI ions is the major limiting factor for achieving high mass resolution. Using analytical expressions obtained for an arbitrary case, convenient working formulas are derived for the case of a reflectron TOF-MS with a dual-stage extraction ion source. The special case of a MALDI reflectron TOF-MS with an ion source having a low acceleration voltage (or large extraction region) is considered. The formulas derived correct the effect of the acceleration regions in a MALDI ion source and after the reflectron before detecting ions.  相似文献   

2.
Measurements of kinetic energy distributions of molecular ions ejected into an extraction field by matrix-assisted laser desorption are reported. The measurements were made in a time-of-flight mass spectrometer with an electrostatic mirror by measuring the reflected signal as a function of the difference between the accelerating voltage and the voltage applied to the mirror. The molecular ions were found to have less kinetic energy than the extraction field alone would normally provide, i.e., we observed an energy deficit. Under conditions typical for a matrix-assisted laser desorption experiment, the deficit is about 24 eV for molecular ions of insulin. The size of the deficit increases with the intensity of the molecular ion signal, and the molecular weight of the protein; it is also larger for negative molecular ions than for positive molecular ions.  相似文献   

3.
The traditional solvent-based matrix-assisted laser desorption ionization (MALDI) preparation method has been used to analyze nonpolar polymers of various molecular weights. High resolution silver cationized oligomers with masses of up to 12 KDa were measured using 9.4 tesla Fourier transform mass spectrometry (FTMS) with an external ionization source. It was observed that when time-of-flight mass spectrometry was used, the spectra of polyethylene polymers showed abundant low mass fragment ions. However, these fragments were absent from the FTMS spectra.  相似文献   

4.
We present a novel enhancement to matrix-assisted laser desorption ionization (MALDI) post-source decay (PSD) analysis whereby fragment ions from multiple precursor ions are acquired into the same spectrum without employing a timed ion gate to preselect each parent ion. Fragment ions are matched to their corresponding precursor ions by comparing spectra acquired at slightly different reflectron electric fields. By measuring the difference in time-of-flight (TOF) between the two spectra for each fragment, it is possible to calculate the mass of the fragment ion and its parent. This new "parallel PSD" technique reduces analysis time and consumes less sample than conventional PSD, which requires an ion gate for serial preselection of precursor ions.  相似文献   

5.
Comparative MS/MS studies of singly and doubly charged electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) precursor peptide ions are described. The spectra from these experiments have been evaluated with particular emphasis on the data quality for subsequent data processing and protein/amino acid sequence identification. It is shown that, once peptide ions are formed by ESI or MALDI, their charge state, as well as the collision energy, is the main parameter determining the quality of collision-induced dissociation (CID) MS/MS fragmentation spectra of a given peptide. CID-MS/MS spectra of singly charged peptides obtained on a hybrid quadrupole orthogonal time-of-flight mass spectrometer resemble very closely spectra obtained by matrix-assisted laser desorption/ionization post-source decay time-of-flight mass spectrometry (MALDI-PSD-TOFMS). On the other hand, comparison of CID-MS/MS spectra of either singly or doubly charged ion species shows no dependence on whether ions have been formed by ESI or MALDI. This observation confirms that, at the time of precursor ion selection, further mass analysis is effectively decoupled from the desorption/ionization event. Since MALDI ions are predominantly formed as singly charged species and ESI ions as doubly charged, the associated difference in the spectral quality of MS/MS spectra as described here imposes direct consequences on data processing, database searching using ion fragmentation data, and de novo sequencing when ionization techniques are changed.  相似文献   

6.
Lipooligosaccharides (LOS) are powerful Gram-negative glycolipids that evade the immune system and invade host animal and vegetal cells. The structural elucidation of LOS is pivotal to understanding the mechanisms of infection at the molecular level. The amphiphilic nature of LOS has been the main obstacle for structural analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our approach has resolved this important issue and has permitted us to obtain reflectron MALDI mass spectra of LOS to reveal the fine chemical structure with minimal structural variations. The high-quality MALDI mass spectra show LOS species characteristic of molecular ions and defined fragments due to decay in the ion source. The in-source decay yields B-type ions, which correspond to core oligosaccharide(s), and Y-type ions, which are related to lipid A unit(s). MALDI tandem time-of-flight (TOF/TOF) MS of lipid A allowed for the elucidation of its structure directly from purified intact LOS without the need for any chemical manipulations. These findings constitute a significant advancement in the analysis of such an important biomolecule by MALDI MS.  相似文献   

7.
We describe experiments in MALDI-TOF and MALDI-TOF-TOF showing that the ejection of protein-matrix cluster ions and their partial decay in the source occur in MALDI. The use of radial beam deflection and small size detector in linear mode allows detection of ions with higher time-of-flight and kinetic energy deficit. MALDI-TOF-TOF experiments were carried out by selecting chemical noise ions at m/z higher than that of a free peptide ion. Whatever the selected m/z (up to m/z 300) the molecular peptide ion appeared as the main fragment. The production of protein-matrix clusters and their partial decay in the source was found to increase with the size of the protein (MW from 1000 to 150,000 u), although it decreases with increasing charge state. These effects were observed for different matrices (HCCA and SA) and in a large laser fluence range. Experimental results and calculation highlight that a continuous decay of protein-matrix cluster ions occurs in the source. This decay-desolvation process can account for the high-mass tailing and peak shifting as well as the strong noise/background in the mass spectra of proteins.  相似文献   

8.
Atandem reflectron time-of-flight mass spectrometer developed in our laboratory provides a unique opportunity to investigate the collision-induced dissociation of fullerene ions formed by matrix-assisted laser desorption/ionization (MALDI). Specifically, this opportunity arises from the ability to utilize high energy collisional activation (normally available only on tandem sector instruments by using continuous ionization techniques) for ions formed by pulsed laser desorption, whereas most MALDI time-of-flight instruments record product ion mass spectra of ions formed by metastable or postsource decay. In this study we investigate the products of mass-selected and collisionally activated C 60 + and C 70 + ions by using different target gases over a range of target gas pressures. In general, heavier target gases produce more extensive fragmentation and improve the mass resolution of lower mass ionic products because a greater portion of these ions are formed by single collisions. Additionally, the tandem time-of-flight instrument utilizes a nonlinear (curved-field) reflectron in the second mass analyzer that enables high energy collision-induced dissociation spectra to be recorded without scanning or stepping the reflectron voltage.  相似文献   

9.
An orthogonal injection (OI) home-made reflectror type time-of-flight (TOF) mass spectrometer has been constructed with a matrix-assisted laser desorption/ionization (MALDI) source. Ions generated by MALDI are measured using a pulsed voltage delayed extraction method. The laser used is a frequency quadrupled Nd:YAG laser with output at wavelength of 266 nm, the matrix used here is 2,5-dihydroxybenzonic acid (DHB), and the analytes are Malachite green and peptides. Measurements of resolving power and statistical evaluation of the mass accuracy are reported here. The results indicate that resolving power in the range of 3400 to 4000 (full width at half maximum), the average error of the mass accuracy is below 0.0075%, A perfectly linear (m/z)1/2 versus t plot is found. Finally, the initial velocity distribution of analyte and matrix ions in the range of 400~1000 m/s is measured.  相似文献   

10.
Matrix-assisted laser desorption/ionization coupled with time-of-flight mass spectrometry (MALDI/TOF-MS) was used for the analysis of low-molecular phosphate compounds found in Hanford tank wastes. The mass spectra of these compounds indicate protonated peaks as well as sodium adducts. Analytical methods presently utilized for the analysis of the phosphate-related organics are both time consuming and labor intensive. A promising alternative is MALDI/TOFMS. The MALDI process produces both positive and negative ions directly and very little sample is required. In addition, there is limited sample preparation and minimal hazardous waste production.  相似文献   

11.
The use of a high-performance orthogonal time-of-flight (o-TOF) mass spectrometer for sequence analysis is described. The mass spectrometer is equipped with a matrix-assisted laser desorption/ionization (MALDI) source that operates at elevated pressure, 0.01-1 Torr. Ion fragmentation is controlled by varying the pressure of the buffer gas, the laser energy, the voltage difference between the MALDI target and the adjacent sampling cone, and between the cone and the quadrupole ion guide. The peptides were analyzed under optimal ionization conditions to obtain their molecular mass, and under conditions that promote ion dissociation via metastable decomposition or collision-induced dissociation (CID). The fragmentation spectra were used to obtain sequence information. Ion dissociation was promoted via three configurations of the ionization parameters. All methods yielded sequencing-grade b- and y-type ions. Two binary mixtures of peptides were used to demonstrate that: (1) external calibration provides a standard deviation (sigma) of 4 ppm with a mode of 9 ppm; and (2) that peptides with molecular masses that differ by a factor of two may be independently fragmented by appropriately choosing the CID energy and the low-mass cut-off. Analyses of tryptic digests employed liquid chromatography (LC), deposition of the eluant on a target, and finally MALDI-TOF mass spectrometry. The mass fingerprint and the (partial) sequence of the tryptic peptides were matched to their precursor protein via database searches.  相似文献   

12.
Matrix-assisted laser desorption/ionization (MALDI) mass spectra were obtained from single particles injected directly into a time-of-flight mass spectrometer. Aerosol particles were generated at atmospheric pressure using a piezoelectric single-particle generator or a pneumatic nebulizer and introduced into the mass spectrometer through a series of narrow-bore tubes. Particles were detected by light scattering that was used to trigger a 337 nm pulsed nitrogen laser and the ions produced by laser desorption were mass separated in a two-stage reflectron time-of-flight mass spectrometer. MALDI mass spectra of single particles containing bradykinin, angiotensin II, gramicidin S, vitamin B(12) or gramicidin D were obtained at mass resolutions greater than 400 FWHM. For the piezoelectric particle generator, the efficiency of particle delivery was estimated to be approximately 0.02%, and 50 pmol of sample were consumed for each mass spectrum. For the pneumatic nebulizer, mass spectra could be obtained from single particles containing less than 100 amol of analyte, although the sample consumption for a typical mass spectrum was over 400 pmol.  相似文献   

13.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

14.
The performance of an energy sensitive, niobium superconducting tunnel junction (STJ) detector is investigated by measuring the pulse height produced by impacting molecular and atomic ions at different kinetic energies. Ions are produced by laser desorption and matrix-assisted laser desorption in a time-of-flight mass spectrometer. Our results show that the STJ detector pulse height decreases for increasing molecular ion mass, passes through a minimum at around 2000 Da, and then increases with increasing mass of molecular ions above 2000 Da. The detector does not show a decline in sensitivity for high mass ions as is observed with microchannel plate ion detectors. These detector plus height measurements are discussed in terms of several physical mechanisms involved in an ion-surface collision.  相似文献   

15.
The capability to rapidly and confidently determine or confirm the sequences of short oligonucleotides, including native and chemically-modified DNA and RNA, is important for a number of fields. While matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) has been used previously to sequence short oligonucleotides, the typically low fragmentation efficiency of in-source or post-source decay processes necessitates the accumulation of a large number of spectra, thus limiting the throughput of these methods. Here we introduce a novel matrix, 1,5-diaminonapthalene (DAN), for facile in-source decay (ISD) of DNA and RNA molecular anions, which allows for rapid sequence confirmation. d-, w-, and y-series ions are prominent in the spectra, complementary to the (a-B)- and w- ions that are typically produced by MALDI post-source decay (PSD). Results are shown for several model DNA and RNA oligonucleotides, including combinations of DAN-induced fragmentation with true tandem TOF MS (MS/MS) for pseudo-MS3 and “activated-ion PSD.”  相似文献   

16.
A novel method for analysing polysaccharide materials is described which employs size-exclusion chromatography (SEC) followed by detection by on-line electrospray ionisation mass spectrometry (ESI-MS) and off-line matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). It is demonstrated through SEC/ESI ion trap mass spectrometry that the formation of multiply charged oligomer ions, which bind up to five sodium cations, allows the rapid analysis of polysaccharide ions with molecular weights in excess of 9 kDa. MALDI spectra generated from fractionation of the effluent collected from the same SEC separation are shown to be in good agreement with the ESI spectra with respect to molecular weight distributions and types of ions generated. ESI and MALDI mass spectra of samples obtained from sequential graded ethanol precipitation and SEC fractionation of acid and enzymatically digested arabinoxylan polysaccharides show important structural differences between polysaccharide fragments. In addition, a comparison is made between the mass spectra of native and permethylated SEC-separated fragments of acid and enzymatically treated arabinogalactan. Linkage information of the permethylated arabinogalactan oligomers can be rapidly established through the use of on-line SEC/ESI-MS( n) experiments.  相似文献   

17.
Effects of sample exposure to UV laser irradiation on the matrix-assisted laser desorption—ionization (MALDI) mass spectra of different proteins are reported. The exposure is varied by irradiating the same sample spot with a differing number of UV laser pulses. The ion yield, mass resolution and internal energy content of ejected molecular ions are monitored as a function of the sample exposure. Other parameters that influence the MALDI spectra (and related to sample exposure) such as laser fluence, sample thickness, matrix-to-protein molar ratio, total deposited amount, and molecular mass of the protein, are also examined.  相似文献   

18.
Various secondary series are observed in matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectra of polystyrene. The number and positions of the series depend on the choice of matrix and added cation. For a given treatment, series observed in linear mode are not necessarily observed in reflectron mode, and vice versa. Post-source decay analysis was used to determine that the secondary series arise at least in part from formation and decay of adducts of polystyrene with matrix species. There is some treatment-to-treatment variation, but adduct formation and decay were observed for all tested treatments. The multiplicity of secondary series makes it unclear whether post-source decay occurs for the main series (polystyrene + cation)+ ions under the conditions normally used for polystyrene analysis. Such ions do undergo post-source decay at laser fluences greater than normally used. Although only polystyrene was investigated in this work, other polymers may also produce adduct and decay series in MALDI analysis. Their presence can mask the presence of minor components in a sample, but at least as observed here, do not have a strong influence on molecular mass determinations.  相似文献   

19.
Compared to continuous extraction, pulsed extraction (PE) of ions formed by matrix-assisted laser desorption/ionization (MALDI) in time-of-flight (TOF) mass spectrometers significantly improves mass resolution. Parameters such as extraction voltage, delay time, and correction pulse must be varied, however, to achieve optimum mass resolution over a broad mass range because the PE method is mass dependent. We previously reported a novel method, mass correlated acceleration (MCA), which we have now combined with a reflectron MALDI TOF mass spectrometer to further enhance mass resolution over a broader mass range. Unlike the PE method, MCA is not mass dependent and high resolution mass spectra can be achieved with a single tuning of instrument parameters. The ions may be brought into focus simultaneously, i.e., the multi-channel recording advantage can be more fully realized. The MCA dual-stage ion source design includes an extraction pulse region and an acceleration region that contains a time-dependent waveform correlated with mass. We demonstrate the validity of this novel technique with applications in peptide mixture analysis and protein digests of lysozyme and bovine serum albumin.  相似文献   

20.
Positive ion mass spectral fragmentation of new N-carbamoyl/N-thiocarbamoyl derivatives of narcotine and compounds closely related to it are reported and discussed. The techniques used include electron impact (EI), fast-atom bombardment (FAB), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). Prominent peaks in the mass spectra of these compounds appear to involve C-C bond cleavage beta to the amine nitrogen with loss of the 4,5-dimethoxy(1H)isobenzofuranone moiety from their molecular ions, along with another prominent peak at m/z 382. No molecular ion peaks of these compounds were recorded in EI, whereas intense [M + H]+ ion peaks were observed in FAB and ESI spectra. MALDI also yielded [M + H]+ ion peaks in good agreement with FAB and ESI studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号