首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Both a molecule dynamic study and a combined quantum mechanics and mole-cule mechanics(QM/MM) study on the acetylating deactivation mechanism of isoniazid were presented.This type of reaction was catalyzed by arylamine N-acetyltransferases(NATs) and the results strongly support a direct acetyl group transfer process rather than a stepwise one.The isoniazid was strictly restrained in proper relative position to accept the acetyl group by a Hydrogen-bond network formed by the residues at the active center.The residues,His110 and Cys70,would be functioned as 'general base' rather than 'general acid'.If all the residues(including H2O molecules) were removed from the system,the activation energy will be increased from 145.1 to 243.3 kJ/mol.The calculations met the experimental data with good agreement.  相似文献   

2.
Molecular dynamics simulations using a combined QM/MM potential have been performed to study the catalytic mechanism of human cathepsin K, a member of the papain family of cysteine proteases. We have determined the two-dimensional free energy surfaces of both acylation and deacylation steps to characterize the reaction mechanism. These free energy profiles show that the acylation step is rate limiting with a barrier height of 19.8 kcal/mol in human cathepsin K and of 29.3 kcal/mol in aqueous solution. The free energy of activation for the deacylation step is 16.7 kcal/mol in cathepsin K and 17.8 kcal/mol in aqueous solution. The reduction of free energy barrier is achieved by stabilization of the oxyanion in the transition state. Interestingly, although the "oxyanion hole" has been formed in the Michaelis complex, the amide units do not donate hydrogen bonds directly to the carbonyl oxygen of the substrate, but they stabilize the thiolate anion nucleophile. Hydrogen-bonding interactions are induced as the substrate amide group approaches the nucleophile, moving more than 2 A and placing the oxyanion in contact with Gln19 and the backbone amide of Cys25. The hydrolysis of peptide substrate shares a common mechanism both for the catalyzed reaction in human cathepsin K and for the uncatalyzed reaction in water. Overall, the nucleophilic attack by Cys25 thiolate and the proton-transfer reaction from His162 to the amide nitrogen are highly coupled, whereas a tetrahedral intermediate is formed along the nucleophilic reaction pathway.  相似文献   

3.
The nature of the Fe-O2 bonding in oxy-myoglobin was probed by theoretical calculations: (a) QM/MM (hybrid quantum mechanical/molecular mechanical) calculations using DFT/MM and CASSCF/MM methods and (b) gas-phase calculations using DFT (density functional theory) and CASSCF (complete active space self-consistent field) methods. Within the protein, the O2 is hydrogen bonded by His64 and the complex feels the bulk polarity of the protein. Removal of the protein causes major changes in the complex. Thus, while CASSCF/MM and DFT/MM are similar in terms of state constitution, degree of O2 charge, and nature of the lowest triplet state, the gas-phase CASSCF(g) species is very different. Valence bond (VB) analysis of the CASSCF/MM wave function unequivocally supports the Weiss bonding mechanism. This bonding arises by electron transfer from heme-Fe(II) to O2 and the so formed species coupled then to a singlet state Fe(III)-O2(-) that possesses a dative sigma(Fe-O) bond and a weakly coupled pi(Fe-O2) bond pair. The bonding mechanism in the gas phase is similar, but now the sigma(Fe-O) bond involves higher back-donation from O2(-) to Fe(III), while the constituents of pi(Fe-O2) bond pair have greater delocalization tails. The protein thus strengthens the Fe(III)-O2(-) character of the complex and thereby affects its bonding features and the oxygen binding affinity of Mb. The VB model is generalized, showing how the protein or the axial ligand of the oxyheme complex can determine the nature of its bonding in terms of the blend of the three bonding models: Weiss, Pauling, and McClure-Goddard.  相似文献   

4.
We have developed a method to estimate free energies of reactions in proteins, called QM/MM-PBSA. It estimates the internal energy of the reactive site by quantum mechanical (QM) calculations, whereas bonded, electrostatic, and van der Waals interactions with the surrounding protein are calculated at the molecular mechanics (MM) level. The electrostatic part of the solvation energy of the reactant and the product is estimated by solving the Poisson-Boltzmann (PB) equation, and the nonpolar part of the solvation energy is estimated from the change in solvent-accessible surface area (SA). Finally, the change in entropy is estimated from the vibrational frequencies. We test this method for five proton-transfer reactions in the active sites of [Ni,Fe] hydrogenase and copper nitrite reductase. We show that QM/MM-PBSA reproduces the results of a strict QM/MM free-energy perturbation method with a mean absolute deviation (MAD) of 8-10 kJ/mol if snapshots from molecular dynamics simulations are used and 4-14 kJ/mol if a single QM/MM structure is used. This is appreciably better than the original QM/MM results or if the QM energies are supplemented with a point-charge model, a self-consistent reaction field, or a PB model of the protein and the solvent, which give MADs of 22-36 kJ/mol for the same test set.  相似文献   

5.
We report a QM augmented QM/MM study on the coordination of the tetrahydroxouranylate ion in aqueous solution. QM/MM geometry optimizations followed by full QM single-point calculations on the optimized structures show that a hexa-coordinated structure is more stable than the hepta-coordinated structure by 43 kJ/mol. Charge transfer of the tetrahydroxouranylate to the solvating water molecules is relatively modest, and can be modeled by including a solvation layer consisting of 12 explicit water molecules.  相似文献   

6.
Herein, we report molecular dynamics simulations of the mononuclear form of the Bacillus cereuszinc-beta-lactamase. We studied two different configurations which differ in the presence of a zinc-bound hydroxide or a zinc-bound water and in the protonation state of the essential His210 residue. Contacts of the catalytically important residues (Asp90, His210, Cys168, etc.) with the zinc center are characterized by the MD analyses. The nature of the Zn-OH(2) --> His210 proton transfer pathway connecting the two configurations was studied by means of QM calculations on cluster models while the relative stability of the two configurations was estimated from QM/MM calculations in the enzyme. From these results, a theoretical model for the kinetically active form of the B. cereus metalloenzyme is proposed. Some mechanistic implications and the influence of mutating the Cys168 residue are also discussed.  相似文献   

7.
Bioinorganic canon states that active-site thiolate coordination promotes rapid electron transfer (ET) to and from type 1 copper proteins. In recent work, we have found that copper ET sites in proteins also can be constructed without thiolate ligation (called "type zero" sites). Here we report multifrequency electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD), and nuclear magnetic resonance (NMR) spectroscopic data together with density functional theory (DFT) and spectroscopy-oriented configuration interaction (SORCI) calculations for type zero Pseudomonas aeruginosa azurin variants. Wild-type (type 1) and type zero copper centers experience virtually identical ligand fields. Moreover, O-donor covalency is enhanced in type zero centers relative that in the C112D (type 2) protein. At the same time, N-donor covalency is reduced in a similar fashion to type 1 centers. QM/MM and SORCI calculations show that the electronic structures of type zero and type 2 are intimately linked to the orientation and coordination mode of the carboxylate ligand, which in turn is influenced by outer-sphere hydrogen bonding.  相似文献   

8.
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound I (Cpd I), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd I has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH(2)), followed by heterolytic O-O bond cleavage that generates Cpd I and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd I). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd I and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd I is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd I are of similar energies, with a slight preference for Cpd I.  相似文献   

9.
The hydrogen abstraction and the OH migration processes catalyzed by diol dehydratase are discussed by means of a quantum mechanical/molecular mechanical method. To evaluate the push effect of His143 and the pull effect of Glu170, we considered three kinds of whole-enzyme model, the protonated and two unprotonated His143 models. A calculated activation energy for the hydrogen abstraction by the adenosyl radical is 15.6 (13.6) kcal/mol in the protonated (unprotonated) His143 model. QM/MM calculational results show that the mechanism of the OH migration is significantly changed by the protonation of His143. In the protonated His143 model, the OH group migration triggered by the full proton donation from the imidazolium to the migrating OH group occurs by a stepwise OH abstraction/re-addition process in which the water production reduces the barrier for the C-O bond cleavage. On the other hand, the OH migration in the unprotonated His143 model proceeds in a concerted manner, as we previously proposed using a simple model including only K+ ion and substrate. The latter mechanism seems to be kinetically more favorable from the calculated energy profiles and is consistent with experimental results. The activation barrier of the OH group migration step is only 1.6 kcal/mol reduced by the hydrogen-bonding interaction between the O2 of the substrate and unprotonated His143. Thus, it is predicted that His143 is not protonated, and therefore the main active-site amino acid residue that lowers the energy of the transition state for the OH group migration is determined to be Glu170.  相似文献   

10.
The free energy change associated with the isomerization reaction of glycine in water solution has been studied by a hybrid quantum mechanical/molecular mechanical (QM/MM) approach combined with the theory of energy representation (QM/MM-ER) recently developed. The solvation free energies for both neutral and zwitterionic form of glycine have been determined by means of the QM/MM-ER simulation. The contributions of the electronic polarization and the fluctuation of the QM solute to the solvation free energy have been investigated. It has been found that the contribution of the density fluctuation of the zwitterionic solute is estimated as -4.2 kcal/mol in the total solvation free energy of -46.1 kcal/mol, while that of the neutral form is computed as -3.0 kcal/mol in the solvation free energy of -15.6 kcal/mol. The resultant free energy change associated with the isomerization of glycine in water has been obtained as -7.8 kcal/mol, in excellent agreement with the experimental data of -7.3 or -7.7 kcal/mol, implying the accuracy of the QM/MM-ER approach. The results have also been compared with those computed by other methodologies such as the polarizable continuum model and the classical molecular simulation. The efficiency and advantage of the QM/MM-ER method has been discussed.  相似文献   

11.
12.
Binding of dioxygen to a non-heme enzyme has been modeled using the ONIOM combined quantum mechanical/molecular mechanical (QM/MM) method. For the present system, isopenicillin N synthase (IPNS), binding of dioxygen is stabilized by 8-10 kcal/mol for a QM:MM (B3LYP:Amber) protein model compared to a quantum mechanical model of the active site only. In the protein system, the free energy change of O2 binding is close to zero. Two major factors consistently stabilize O2 binding. The first effect, evaluated at the QM level, originates from a change in coordination geometry of the iron center. The active-site model artificially favors the deoxy state (O2 not bound) because it allows too-large rearrangements of the five-coordinate iron site. This error is corrected when the protein is included. The corresponding effect on binding energies is 3-6 kcal/mol, depending on the coordination mode of O2 (side-on or end-on). The second major factor that stabilizes O2 binding is van der Waals interactions between dioxygen and the surrounding enzyme. These interactions, 3-4 kcal/mol at the MM level, are neglected in models that include only the active site. Polarization of the active site by surrounding amino acids does not have a significant effect on the binding energy in the present system.  相似文献   

13.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   

14.
A mutation analysis of the catalytic functions of active-site residues of coenzyme B(12)-dependent diol dehydratase in the conversion of 1,2-propanediol to 1,1-propanediol has been carried out by using QM/MM computations. Mutants His143Ala, Glu170Gln, Glu170Ala, and Glu170Ala/Glu221Ala were considered to estimate the impact of the mutations of His143 and Glu170. In the His143Ala mutant the activation energy for OH migration increased to 16.4 from 11.5 kcal mol(-1) in the wild-type enzyme. The highest activation energy, 19.6 kcal mol(-1), was measured for hydrogen back-abstraction in this reaction. The transition state for OH migration is not sufficiently stabilized by the hydrogen-bonding interaction formed between the spectator OH group and Gln170 in the Glu170Gln mutant, which demonstrates that a strong proton acceptor is required to promote OH migration. In the Glu170Ala mutant, a new strong hydrogen bond is formed between the spectator OH group and Glu221. A computed activation energy of 13.6 kcal mol(-1) for OH migration in the Glu170Ala mutant is only 2.1 kcal mol(-1) higher than the corresponding barrier in the wild-type enzyme. Despite the low activation barrier, the Glu170Ala mutant is inactive because the subsequent hydrogen back-abstraction is energetically demanding in this mutant. OH migration is not feasible in the Glu170Ala/Glu221Ala mutant because the activation barrier for OH migration is greatly increased by the loss of COO(-) groups near the spectator OH group. This result indicates that the effect of partial deprotonation of the spectator OH group is the most important factor in reducing the activation barrier for OH migration in the conversion of 1,2-propanediol to 1,1-propanediol catalyzed by diol dehydratase.  相似文献   

15.
We have studied the conformational dependence of molecular mechanics atomic charges for proteins by calculating the charges fitted to the quantum mechanical (QM) electrostatic potential (ESP) for all atoms in complexes between avidin and seven biotin analogues for 20 snapshots from molecular dynamics simulations. We have studied how various other charge sets reproduce those charges. The QM charges, even if averaged over all snapshots or all residues, in general have a larger magnitude than standard Amber charges, indicating that the restraint toward zero in the restrained ESP method is too strong. This has a significant influence on the electrostatic conformational energies and the interaction energy between the biotin ligand and the protein, giving a difference between the QM and Amber charges of 43 and 8 kJ/mol for the negatively charged and neutral biotin analogues, respectively (3-4%). However, this energy difference is strongly reduced if the solvation energy (calculated by the Poisson-Boltzmann or Generalized Born methods) is added, viz., to 7 kJ/mol for charged and 3 kJ/mol for uncharged ligand. In fact, charges need to be recalculated with a QM method only for residues within 7 or 4 A of the ligand, if the error should be less than 4 kJ/mol. Unfortunately, the QM charges do not give significantly better MM/PBSA estimates of ligand-binding affinities than standard Amber charges.  相似文献   

16.
Two combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, namely, HF/MM and B3LYP/MM, have been performed to investigate the local structure and dynamics of liquid ammonia. The most interesting region, a sphere containing a central reference molecule and all its nearest surrounding molecules (first coordination shell), was treated by the Hartree-Fock (HF) and hybrid density functional B3LYP methods, whereas the rest of the system was described by the classical pair potentials. On the basis of both HF and B3LYP methods, it is observed that the hydrogen bonding in this peculiar liquid is weak. The structure and dynamics of this liquid are suggested to be determined by the steric packing effects, rather than by the directional hydrogen bonding interactions. Compared to previous empirical as well as Car-Parrinello (CP) molecular dynamics studies, our QM/MM simulations provide detailed information that is in better agreement with experimental data.  相似文献   

17.
The heme peroxidases have a histidine group as the axial ligand of iron. This ligand forms a hydrogen bond to an aspartate carboxylate group by the other nitrogen atom in the side chain. The aspartate is not present in the globins and it has been suggested that it gives an imidazolate character to the histidine ligand. Quantum chemical calculations have indicated that the properties of the heme site strongly depend on the position of the proton in this hydrogen bond. Therefore, we have studied the location of this proton in all intermediates in the reaction mechanism, using a set of different quantum mechanical and combined experimental and computational methods. Quantum refinements of a crystal structure of the resting FeIII state in yeast cytochrome c peroxidase show that the geometric differences of the two states are so small that it cannot be unambiguously decided where the proton is in the crystal structure. Vacuum calculations indicate that the position of the proton is sensitive to the surroundings and to the side chains of the porphyrin ring. Combined quantum and molecular mechanics (QM/MM) calculations indicate that the proton prefers to reside on the His ligand in all states in the reaction mechanism of the peroxidases. QM/MM free energy perturbations confirm these results, but reduce the energy difference between the two states to 12-44 kJ/mol.  相似文献   

18.
The conformations and relative stabilities of folded and extended 3-fluoro-γ-aminobutyric acid (3F-GABA) conformers were studied using explicit solvation models. Geometry optimisations in the gas phase with one or two explicit water molecules favour folded and neutral structures containing intramolecular NH···O-C hydrogen bonds. With three or five explicit water molecules zwitterionic minima are obtained, with folded structures being preferred over extended conformers. The stability of folded versus extended zwitterionic conformers increases on going from a PCM continuum solvation model to the microsolvated complexes, though extended structures become less disfavoured with the inclusion of more water molecules. Full explicit solvation was studied with a hybrid quantum-mechanical/molecular-mechanical (QM/MM) scheme and molecular dynamics simulations, including more than 6000 TIP3P water molecules. According to free energies obtained from thermodynamic integration at the PM3/MM level and corrected for B3LYP/MM total energies, the fully extended conformer is more stable than folded ones by about -4.5 kJ mol(-1). B3LYP-computed (3)J(F,H) NMR spin-spin coupling constants, averaged over PM3/MM-MD trajectories, agree best with experiment for this fully extended form, in accordance with the original NMR analysis. The seeming discrepancy between static PCM calculations and experiment noted previously is now resolved. That the inexpensive semiempirical PM3 method performs so well for this archetypical zwitterion is encouraging for further QM/MM studies of biomolecular systems.  相似文献   

19.
采用量子力学与分子力学组合(QM/MM)方法对人工设计逆醛缩酶RA95.5-8F催化β-羟基酮化合物裂解反应的机理进行了研究.结果表明,裂解反应主要包括赖氨酸Lys1083对底物的亲核进攻、Schiff碱形成、烯胺水解及C—N断裂等过程, C—N键裂解生成丙酮为整个反应的决速步骤,能垒为106.27 kJ/mol;活性中心的赖氨酸Lys1083、酪氨酸Tyr1051、天冬酰胺Asn1110和酪氨酸Tyr1180构成一个催化四联体, Lys1083通过与底物形成席夫碱对底物进行活化, Tyr1051作为催化酸碱参与质子转移过程,催化四联体的氢键网络有利于反应过渡态的稳定并使R-构型的底物更容易结合在活性位点,导致RA95.5-8F对R构型底物具有高的选择性和催化活性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号