首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explicit formulae for the finite strain and rotation measures are given, in the cases when either one of the infinitesimal tensors of strain and rotation vanishes. Conversely, when the finite strain or rotation measure vanishes, explicit formulae for the infinitesimal tensors of strain and rotation are also obtained.  相似文献   

2.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

3.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   

4.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

5.
Nonstationary vibration of a flexible rotating shaft with nonlinear spring characteristics during acceleration through a critical speed of a summed-and-differential harmonic oscillation was investigated. In numerical simulations, we investigated the influence of the angular acceleration , the initial angular position of the unbalance n and the initial rotating speed on the maximum amplitude. We also performed experiments with various angular accelerations. The following results were obtained: (1) the maximum amplitude depends not only on but also on n and : (2) when the initial angular position n changes. the maximum amplitude varies between two values. The upper and lower bounds of the maximum amplitude do not change monotonously for the angular acceleration: (3) In order to always pass the critical speed with finite amplitude during acceleration. the value of must exceed a certain critical value.Nomenclature O-xyz rectangular coordinate system - , 1, 1 inclination angle of rotor and its projections to thexy- andyz-planes - I r polar moment of inertia of rotor - I diametral moment of inertia of rotor - i r ratio ofI r toI - dynamic unbalance of rotor - directional angle of fromx-axis - c damping coefficient - spring constant of shaft - N nt ,N nt nonlinear terms in restoring forees in 1 and 1 directions - 4 representative angle - a small quantity - V. V u .V N potential energy and its components corresponding to linear and nonlinear terms in the restoring forees - directional angle - n coefficients of asymmetrical nonlinear terms - n coefficients of symmetrical nonlinear terms - coefficients of asymmetrical nonlinear terms experessed in polar coordinates - coefficients of symmetrical nonlinear terms expressed in polar coordinates - rotating speed of shaft - t time - n initial angular position of att=0 - p natural frequency - p 1.p t natural frequencies of forward and backward precessions - , 1, 1 total phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - , 1, 1 phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - P, R t ,R b amplitudes of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - difference between phases ( = fu) - acceleration of rotor - initial rotating speed - t t ,r b amplitudes of nonstationary oscillation during acceleration - (r t )max, (r b )max maximum amplitudes of nonstationary oscillation during acceleration - (r 1 1 )max, (r b 1 )max maximum value of angular acceleration of non-passable case - 0 critical value over which the rotor can always pass the critical speed - p 1,p 2,p 3,p 4 natural frequencies of experimental apparatus  相似文献   

6.
Du  C.  Yortsos  Y. C. 《Transport in Porous Media》1999,35(2):205-225
We use porenetwork simulations to study the dependence of the critical gas saturation in solutiongas drive processes on the geometric parameters of the porous medium. We show that for a variety of growth regimes (including global and local percolation, instantaneous and sequential nucleation, and masstransfer driven processes), the critical gas saturation, Sgc, follows a powerlaw scaling with the final nucleation fraction (fraction of sites activated), fq. For 3D processes, this relation reads Sgcfq0.16, indicating a sensitive dependence of Sgc to fq at very small values of fq.  相似文献   

7.
The temperature field of starting thermal plumes were measured in a rotating annulus with various rotation rates and buoyancies. The experiments revealed many details of the internal structure of these convective phenomena and also significant horizontal displacements from their source. Measurements show an increase in the maximum temperature observed in the thermal caps with increasing rotation and a more rapid cooling of the buoyancy source.List of symbols D angle relating inward centripetal acceleration to buoyant acceleration, defined by tan D = R/g - g gravitational acceleration - P total pressure of ambient fluid - R radial coordinate measured from rotation axis - R 0 distance from rotation axis to buoyancy source - u velocity of fluid parcel along the radial direction - velocity of fluid parcel along the azimuthal direction - w velocity of fluid parcel along the axial direction - z axial coordinate, measured upward from the plane containing the buoyancy source - density of a buoyant parcel of fluid - 0 density of the ambient fluid - azimuthal angle measured from the radial line passing through the buoyancy source - rotation rate of the R––z coordinate system in radians/second  相似文献   

8.
The steady laminar boundary layer flow, with an external force, along a vertical isothermal plate is studied in this paper. The external force may be produced either by the motion of the plate or by a free stream. The fluid is water whose density-temperature relationship is non-linear at low temperatures and viscosity and thermal conductivity are functions of temperature. The results are obtained with the numerical solution of the boundary layer equations with , k and variable across the boundary layer. Both upward and downward flow is considered. It was found that the variation of , k and with temperature has a strong influence on mixed convection characteristics.Nomenclature cp water specific heat - f dimensionless stream function - g gravitational acceleration - Grx local Grashof number - k thermal conductivity - Nux local Nusselt number - Pr Prandtl number - Pra ambient Prandtl number - Rex local Reynolds number - s salinity - T water temperature - Ta ambient water temperature - To plate temperature - u vertical velocity - ua free stream velocity - uo plate velocity - v horizontal velocity - x vertical coordinate - y horizontal coordinate - pseudo-similarity variable - nondimensional temperature - dynamic viscosity - f film dynamic viscosity - o dynamic viscosity at plate surface - kinematic viscosity - buoyancy parameter - water density - a ambient water density - f film water density - o water density at plate surface - physical stream function  相似文献   

9.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

10.
Models of vibrationdissociation interaction are verified on the basis of results of numerical simulation of nonequilibrium air flow in the shock layer near vehicles flying in the atmosphere and data of inflight and windtunnel experiments on measurement of ionization and radiative characteristics of the shock layer.  相似文献   

11.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

12.
Illinois coal was ground and wet-sieved to prepare three powder stocks whose particle-size distributions were characterized. Three suspending fluids were used (glycerin, bromonaphthalene, Aroclor), with viscosities s that differed by a factor of 100 and with very different chemistries, but whose densities matched that of the coal. Suspensions were prepared under vacuum, with coal volume fractions that ranged up to 0.46. Viscosities were measured in a cone-and-plate over a shear rate range 10–3–102 s–1. Reduced viscosity r = /s is correlated in the high-shear limit ( ) with/ M, where M is the maximum packing fraction for the high-shear microstructure, to reveal the roles of size distribution and suspending fluid character. A new model that invokes the stress-dependence of M is found to correlate r well under non-Newtonian conditions with simultaneous prediction of yield stress at sufficiently high; a critical result is that stress and not governs the microstructure and rheology. Numerous experimental anomalies provide insight into suspension behavior.  相似文献   

13.
The linear stability theory is used to study stability characteristics of laminar condensate film flow down an arbitrarily inclined wall. A critical Reynolds number exists above which disturbances will be amplified. The magnitude of the critical Reynolds number is in all practical situations so small that a laminar gravity-induced condensate film can be expected to be unstable. Several stabilizing effects are acting on the film flow; at an inclined wall these effects are due to surface tension, gravity and condensation mass transfer.
Zusammenfassung Mit Hilfe der linearen Stabilitätstheorie werden die Stabilitätseigenschaften laminarer Kondensatfilme an einer geneigten Wand untersucht. Es zeigt sich, daß Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einfluß von Oberflächenspannung, Schwerkraft und Stoffübertragung durch Kondensation bewkkt jedoch, daß Störungen in bestimmten Wellenlängenbereichen gedämpft werden.

Nomenclature c=c*/u0 complex wave velocity, celerity, dimensionless - c*=c r * + i c i * complex wave velocity, celerity, dimensional - cp specific heat at constant pressure - g gravitational acceleration - hfg latent heat - k thermal conductivity of liquid - p* pressure - p=p*/u0 2 dimensionless pressure - Pe=Pr Re* Peclet number - Pr Prandtl number - Re*=u0 / Reynolds number (defined with surface velocity) - S temperature perturbation amplitude - t* time - t=t* u0/ dimensionless time - T temperature - Ts saturation temperature - Tw wall temperature - T=Ts-Tw temperature drop across liquid film - u*, v* velocity components - u=u*/u0 dimensionless velocity components - v=v*/u0 dimensionless velocity components - u0 surface velocity of undisturbed film flow - v g * vapor velocity - x*, y* coordinates - x=x*/ dimensionless coordinates - y=y*/ dimensionless coordinates Greek Symbols =* wave number, dimensionless - *=2 /* wave number dimensional - * wave length, dimensional - =*/ wave length, dimensionless - local thickness of undisturbed condensate film - kinematic viscosity, liquid - density, liquid - g density vapor - surface tension - = (1 +) film thickness of disturbed film, Fig. 1 - stream function perturbation amplitude - angle of inclination Base flow quantities are denoted by, disturbance quantities are denoted by.  相似文献   

14.
The turbulence characteristics of fully developed isothermal air flows through a symmetric trapezoidal duct were examined experimentally using Pitot tube and hot-wire anemometry over a Reynolds number range of 3.7–11.6×104. The measurements included local wall shear stress and the cross-sectional distributions of mean axial velocity, secondary velocities and Reynolds stresses. Four secondary flow cells were detected in a symmetric half of the duct. Although secondary velocity components were typically less than about 1% of the bulk axial velocity, their effect was especially pronounced on the distributions of turbulent kinetic energy and local wall shear stress.List of symbols a, b, c, d trapezoidal duct dimensions (Fig. 1) - A, B coefficients in log law (Table 1) - D h equivalent hydraulic diameter - f Darcy friction factor, (2D h /U b 2 ) (dP/dx) - k turbulent kinetic energy per unit mass, - k + dimensionless turbulent kinetic energy, k/( *)2 - P static pressure - Re Reynolds number, U b D h / - s distance along inclined wall, measured from top corner (Fig. 1) - u, v, w fluctuating components of the velocities in the x, y, z directions - u +, v +, w + dimensionless turbulence intensities; u 2/ *, v 2/ *, w 2/ * - u * local friction velocity, ( w /)1/2 - * average friction velocity, (¯gt/)1/2 - axial mean velocity (time-average) - U b average mean axial velocity - U sec resultant of ¯V and ¯W, (¯V 2+¯ 2)1/2 - U + dimensionless velocity, /u * - ¯V, ¯W mean velocities in the y, z directions (secondary velocities) - x axial direction - y, 2 horizontal and vertical directions (Fig. 1) - z + dimensionless distance from (and normal to) a wall, zu */v - distance from wall (at y=0) to location of maximum axial velocity - laminar dynamic viscosity - v kinematic viscosity - air density - w local wall shear stress - ¯ w average of local wall shear stresses over all walls - ¯ average wall shear stress, (dP/dx) (D h /4) - corner angle of trapezoidal duct (Fig. 1) A version of this paper was presented at the 10th Symposium on Turbulence, University of Missouri-Rolla, Sept. 22–24, 1986  相似文献   

15.
16.
The problem of classification of ordinary differential equations of the form y = f(x,y) by admissible local Lie groups of transformations is solved. Standard equations are listed on the basis of the equivalence concept. The classes of equations admitting a oneparameter group and obtained from the standard equations by invariant extension are described.  相似文献   

17.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

18.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

19.
The character of stability loss of the circular Couette flow, when the Reynolds number R passes through the critical value R0, is investigated within a broad range of variation of the wave numbers. The Lyapunov-Schmidt method is used [1, 2]; the boundary-value problems for ordinary differential equations arising in the case of its realization are solved numerically on a computer. It is shown that the branching character substantially depends on the wave number . For all a, excluding a certain interval (1, 2), the usual postcritical branching takes place: at a small supercriticality the circular flow loses stability and is softly excited into a secondary stationary flow — stable Taylor vortices. For wave numbers from the interval (1,2) a hard excitation of Taylor vortices takes place: at a small subcriticality R=R02 the secondary mode is unstable and merges with the Couette flow for 0; however, for a small supercriticality in the neighborhood of a circular flow there exist no stationary modes which are different.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–135, May–June, 1976.  相似文献   

20.
An attempt is made to incorporate into a quasilinear viscoelastic constitutive equation of the Boltzmann superposition type the two mirror relations of Gleissle, as well as his relation between the steady-state first normal-stress difference and the shear viscosity curve. It is shown that the three relations can hold separately within this constitutive model, but not simultaneously, because they require a different nonlinear strain measure, namelyS 12 () = – a ( – 1) (a = 0 for 1,a = 1 for 1) for the mirroring of the viscosities,S 12 () = – a (–k 2/) (a = 0 for k, a = 1 for k) for the mirroring of the first normal-stress coefficients, and for the third relation. Here denotes the shear strain and erf the error function. Experimental data on melts of a low-density polyethylene, a high-density polyethylene and a polypropylene show that the mirror relations are passable approximations, but that the third relation meets reality surprisingly close if the right value ofk is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号