首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a quite general thermodynamic "difference" rule, derived from thermochemical first principles, quantifying the difference between the standard thermodynamic properties, P, of a solid n-solvate (or n-hydrate), n-S, containing n molecules of solvate, S (water or other) and the corresponding solid parent (unsolvated) salt: [P[n-solvate] - P[parent]]/n = constant = theta(P)[S,s-s], or n-S and other solvate, n'-S: [P[-solvate] - P[n'-solvate]]/(n - n') = [P[n-S ] - P[n'-S]]/(n - n') = constant = theta(P)[S,s-s] where P may be any one of: U(POT) (the lattice potential energy), V(m) (the molecular or formula unit volume), Delta(f)H degrees , Delta(f)S degrees , Delta(f)G degrees or (the standard thermodynamic functions of formation and the absolute entropy), and n can be noninteger. The constants, theta(P)[S,s-s], for each property, P, of solvate of type S, are established by correlation of the available set of experimental data. We also show that, when solid-state data for a particular solvate is sparse, theta(P)[S,s-s] can be reliably predicted from liquid-state values, P[S,l], or even gas-state values, P[S,g]. This rule offers a powerful means for predicting unknown thermodynamic data, extending the compass of currently known thermodynamic information. Systems considered involve the following solvates: H(2)O (hydrates), D(2)O, NH(3), ND(3), (CH(3))(2)O, NaOH, CH(3)OH, C(2)H(5)OH, (CH(2)OH)(2), H(2)S, SO(2), HF, KOH, and (CH(CH(3))(2))(2)O. Detailed examples of usage are given for hydrates and for SO(2).  相似文献   

2.
This study investigated thermodynamic properties of uranium–titanium alloy to determine its suitability for storage of hydrogen isotopes. The enthalpy increments of U2Ti were measured using a high temperature inverse drop calorimeter in the temperature range of 299–1,169 K. Temperature dependence of the molar enthalpy increment and molar heat capacity is expressed in the form $ H^\circ_{\text{m}} (T) - H^\circ_{\text{m}} (298.15\,{\text{K}})({\text{J }}\,{\text{mol}}^{ - 1} ) = 23.236(T/{\text{K}}) + 53.292 \times 10^{ - 3} (T/{\text{K}})^{2} - 21.294 \times 10^{5} ({\text{K}}/T) - 4523 $ and $ C^\circ_{\text{p,m}} ({\text{J}}\,{\text{K}}^{ - 1} \,{\text{g}}^{ - 1} ) = 23.236 + 10.6584 \times 10^{ - 2} (T/{\text{K}}) + 21.294 \times 10^{5} ({\text{K}}/T)^{2} (300 \le T/{\text{K}} \le 900) $ , respectively. A set of self consistent thermodynamic functions such as entropy, Gibbs energy function, heat capacity, and Gibbs energy and enthalpy values for U2Ti have been computed using data obtained in this study and required data from the literature.  相似文献   

3.
A new group of "breathing" crystals has been synthesized. These are aromatic solvates of the copper(II) hexafluoroacetylacetonate complex with spin-labeled pyrazole Cu(hfac)(2)L·0.5Solv, where L is 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl and Solv is benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, styrene, o-xylene, m-xylene, p-xylene, 1,4-bis(trifluoromethyl)benzene, 1-methyl-4-ethylbenzene, 1-methyl-4-vinylbenzene, 1,4-diethylbenzene, 1,2,3-trimethylbenzene, or 1,2,4-trimethylbenzene. The main feature of Cu(hfac)(2)L·0.5Solv single crystals is their remarkable mechanical stability and ability to undergo thermally induced structural rearrangements accompanied by spin-crossover-like phenomena. The structures of Cu(hfac)(2)L·0.5Solv solvates are similar and based on mutually parallel {Cu(hfac)(2)L}(∞) heterospin chains with a "head-to-head" motif. The localization of voids with guest molecules being the same in all crystals, the temperature dependence of the effective magnetic moment (μ(eff)) for Cu(hfac)(2)L·0.5Solv is determined by the structure of the guest molecules, along which the polymer chains are "gliding" when the temperature changes. When the temperature decreased from 300 to 100-50 K, μ(eff) decreased, abruptly or gradually, from 2.7-2.4 to ~1.8 β for the majority of Cu(hfac)(2)L·0.5Solv except the solvates with benzene, toluene, and 1,4-bis(trifluoromethyl)benzene. When Cu(hfac)(2)L·0.5C(6)H(6) and Cu(hfac)(2)L·0.5CH(3)-C(6)H(5) were cooled to 50 K, μ(eff) decreased to ~2.1-2.2 β. When Cu(hfac)(2)L·0.5(1,4-(CF(3))(2)-C(6)H(4)) was cooled to 50 K, μ(eff) initially decreased from ~2.7 to 1.9 β and then abruptly increased to ~2.4 β. A single-crystal X-ray diffraction analysis of each solvate within a temperature range wider than the range of magnetic anomaly temperatures revealed a complex interrelated dynamics of the aromatic solvent guest molecules and heterospin chains. The dynamics largely depended on the orientation of the solvent guest molecules relative to the polymer chains. An analysis of the thermally induced phase transformations revealed a relationship between the structural rearrangement of Cu(hfac)(2)L·0.5Solv and the form of the magnetic anomaly on the μ(eff)(T) curve and between the structural rearrangement of the solvate and the temperature of the magnetic effect.  相似文献   

4.
The dicopper(I) complex [Cu2(MeL66)]2+ (where MeL66 is the hexadentate ligand 3,5-bis-{bis-[2-(1-methyl-1H-benzimidazol-2-yl)-ethyl]-amino}-meth ylbenzene) reacts reversibly with dioxygen at low temperature to form a mu-peroxo adduct. Kinetic studies of O2 binding carried out in acetone in the temperature range from -80 to -55 degrees C yielded the activation parameters DeltaH1(not equal) = 40.4 +/- 2.2 kJ mol(-1), DeltaS1)(not equal) = -41.4 +/- 10.8 J K(-1) mol(-1) and DeltaH(-1)(not equal) = 72.5 +/- 2.4 kJ mol(-1), DeltaS(-1)(not equal) = 46.7 +/- 11.1 J K(-1) mol(-1) for the forward and reverse reaction, respectively, and the binding parameters of O2 DeltaH degrees = -32.2 +/- 2.2 kJ mol(-1) and DeltaS degrees = -88.1 +/- 10.7 J K(-1) mol(-1). The hydroxylation of a series of p-substituted phenolate salts by [Cu2(MeL66)O2]2+ studied in acetone at -55 degrees C indicates that the reaction occurs with an electrophilic aromatic substitution mechanism, with a Hammett constant rho = -1.84. The temperature dependence of the phenol hydroxylation was studied between -84 and -70 degrees C for a range of sodium p-cyanophenolate concentrations. The rate plots were hyperbolic and enabled to derive the activation parameters for the monophenolase reaction DeltaH(not equal)ox = 29.1 +/- 3.0 kJ mol(-1), DeltaS(not equal)ox = -115 +/- 15 J K(-1) mol(-1), and the binding parameters of the phenolate to the mu-peroxo species DeltaH degrees(b) = -8.1 +/- 1.2 kJ mol(-1) and DeltaS degrees(b) = -8.9 +/- 6.2 J K(-1) mol(-1). Thus, the complete set of kinetic and thermodynamic parameters for the two separate steps of O2 binding and phenol hydroxylation have been obtained for [Cu2(MeL66)]2+.  相似文献   

5.
Kinetics and equilibria for the formation of a 1:1 complex between palladium(II) and chloroacetate were studied by spectrophotometric measurements in 1.00 mol HClO4 at 298.2 K. The equilibrium constant, K, of the reaction
was determined from multi-wavelength absorbance measurements of equilibrated solutions at variable temperatures as log 0.006 with and , and spectra of individual species were calculated. Variable-temperature kinetic measurements gave rate constants for the forward and backward reactions at 298.2 K and ionic strength 1.00 mol as and , with activation parameters and , respectively. From the kinetics of the forward and reverse processes, and were derived in good agreement with the results of the equilibrium measurements. Specific Ion Interaction Theory was employed for determination of thermodynamic equilibrium constants for the protonation of chloroacetate () and formation of the PdL+ complex (). Specific ion interaction coefficients were derived.  相似文献   

6.
7.
杨维达  谢传良 《化学学报》1989,47(4):333-339
本文对五种组成为[Fe(3-EtO-SalAPA)2]ClO4.S的Fe(III)自旋变异晶态配合物进行了磁学和谱学表征, 所有溶剂合物的变温磁化率和EPR数据证示它们的自旋态转变性质均属渐变型, 在110-300K范围内的Mossbauer谱都只显示单一的四极分裂双峰. 实验结果还表明, 在所有晶态配合物中, Fe(III)自旋态的转变速率小于EPR谱学的时间标度(~10^1^0s^-^1), 而大于Mossbauer谱学的时间标度(~10^7s^-^1). 随着溶剂分子体积由C6H5F至o-C5H4Cl2的依次增大, 相应溶剂合物的μeff-T曲线的Tc值向低温方向位移.特别在单卤代苯系列中, 溶剂的分子体积与Tc值呈线性关系, 但氯苯溶剂合物是例外:后者的反常现象主要是由晶格内部的Tc≈185K时伴随发生了与自旋变异协同的一级相变所造成, 这个相变过程已为示差扫描量热测定和Mossbauer中心位移对温度的曲线呈现的不连续性所证实.  相似文献   

8.
The synthesis and characterization of new two-dimensional (2D) cyanide-bridged iron(II)-gold(I) bimetallic coordination polymers formulated, {Fe(3-Xpy)2[Au(CN)2]2} (py = pyridine; X = F (1), Cl (2), Br (3), and I (4)) and the clathrate derivative {Fe(3-Ipy)2[Au(CN)2]2}.1/2(3-Ipy) (5), are reported. The iron(II) ion lies in pseudoctahedral [FeN6] sites defined by four [Au(CN)2](-) bridging ligands and two 3-Xpy ligands occupying the equatorial and axial positions, respectively. Although only compounds 2 and 4 can be considered strictly isostructurals, all of the components of this family are made up of parallel stacks of corrugated {Fe[Au(CN)2]2}n grids. The grids are formed by edge sharing of {Fe4[Au(CN)2]4} pseudosquare moieties. The stacks are constituted of double layers sustained by short aurophilic contacts ranging from 3.016(2) to 3.1580(8) A. The Au...Au distances between consecutive double layers are in the range of 5.9562(9)-8.790(2) A. Compound 5, considered a clathrate derivative of 4, includes one-half of a 3-Ipy molecule per iron(II) atom between the double layers. Compound 1 undergoes a half-spin transition with critical temperatures Tc downward arrow = 140 K and Tc upward arrow = 145 K. The corresponding thermodynamic parameters derived from differential scanning calorimetry (DSC) are Delta H = 9.8 +/- 0.4 kJ mol(-1) and Delta S = 68.2 +/- 3 J K mol(-1). This spin transition is accompanied by a crystallographic phase transition from the monoclinic P2(1)/c space group to the triclinic P1 space group. At high temperatures, where 1 is 100% high-spin, there is only one crystallographically independent iron(II) site. In contrast, the low temperature structural analysis shows the occurrence of two crystallographically independent iron(II) sites with equal population, one high-spin and the other low-spin. Furthermore, 1 undergoes a complete two-step spin transition at pressures as high as 0.26 GPa. Compounds 2- 4 are high-spin iron(II) complexes according to their magnetic and [FeN6] structural characteristics. Compound 5, characterized for having two different iron(II) sites, displays a two-step spin transition with critical temperatures of Tc(1) = 155 K, Tc(2) downward arrow = 97 K, and Tc(2) upward arrow = 110 K. This change of spin state takes place in both sites simultaneously. All of these results are compared and discussed in the context of other {Fe(L) x [M(I)(CN)2]} coordination polymers, particularly those belonging to the homologous compounds {Fe(3-Xpy)2[Ag(CN)2]2} and their corresponding clathrate derivatives.  相似文献   

9.
Apparent molar volumes, Vphi,2, of aqueous NaCl, NaOH, NaOD, HCl, and DCl in water and heavy water were determined at T = 523 and 573 K and p = 14 MPa with a high-temperature platinum vibrating-tube densimeter in the aquamolality range 0.25 相似文献   

10.
Solvated cobalt(II) ions in neat 1,3-propanediamine (tn) and n-propylamine (pa) have been characterized by electronic absorption spectroscopy and extended X-ray absorption fine structure (EXAFS) spectroscopy. The equilibrium between tetrahedral and octahedral geometry for cobalt(II) ion has been observed in a neat pa solution, but not in neat diamine solutions such as tn and ethylenediamine (en). The thermodynamic parameters and equilibrium constant at 298 K for the geometrical equilibrium in pa were determined to be DeltaH degrees = -36.1 +/- 2.3 kJ mol(-1), DeltaS degrees = -163 +/- 8 J mol(-1) K(-1), and K(298) = 6.0 x 10(-3) M(-2), where K = [Co(pa)(6)(2+)]/{[Co(pa)(4)(2+)][pa](2)}. The equilibrium is caused by the large entropy gain in formation of the tetrahedral cobalt(II) species. The solvent exchange of cobalt(II) ion with octahedral geometry in tn and pa solutions has been studied by the (14)N NMR line-broadening method. The activation parameters and rate constants at 298 K for the solvent exchange reactions are as follows: DeltaH() = 49.3 +/- 0.9 kJ mol(-1), DeltaS() = 25 +/- 3 J mol(-1) K(-1), DeltaV() = 6.6 +/- 0.3 cm(3) mol(-1) at 302.1 K, and k(298) = 2.9 x 10(5) s(-1) for the tn exchange, and DeltaH() = 36.2 +/- 1.2 kJ mol(-1), DeltaS() = 35 +/- 6 J mol(-1) K(-1), and k(298) = 2.0 x 10(8) s(-1) for the pa exchange. By comparison of the activation parameters with those for the en exchange of cobalt(II) ion, it has been confirmed that the kinetic chelate strain effect is attributed to the large activation enthalpy for the bidentate chelate opening and that the enthalpic effect is smaller in the case of the six-membered tn chelate compared with the five-membered en chelate.  相似文献   

11.
The crystal structures of [MnTPP]{Ni[S2C2H(CN)]2} [MnTPP = (meso-tetraphenylporphinato)manganese(III)] and [MnTPP]{Ni[S2C2(CN)2]2} have been determined. These salts possess trans-mu-coordination of S = 1/2 {Ni[S2C2H(CN)]2}*- and {Ni[S(2)C(2)(CN)(2)](2)}*- to Mn(III) and form parallel 1-D coordination polymer chains exhibiting nu(CN) at 2210 and 2200 and 2220 and 2212 cm(-1), respectively. The bis(dithiolato) monoanions are planar and bridge two cations with MnN distances of 2.339(16), and 2.394(3) A, respectively, which are comparable to related MnN distances observed for [MnTPP][TCNE].x(solvates). In addition, [MnTP'P]{Ni[S2C2(CN)2]2} {H2TP'P = meso-tetrakis[3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin] and [MnTP'P(OH2)]{Ni[S2C2(CN)2]2} were prepared. The latter forms isolated paramagnetic ions. The room-temperature values of chiT for 1-D [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2} are 2.55, 3.28, and 2.86 emu K/mol, respectively. Susceptibility (chi) measurements between 2 and 300 K reveal weak antiferromagnetic interactions with theta= -5.9 and -0.2 K for [MnTPP]{Ni[S(2)C(2)H(CN)](2)} and [MnTPP]{Ni[S2C2(CN)2]2}, respectively, and stronger antiferromagnetic coupling of -50 K for [MnTP'P]{Ni[S2C2(CN)2]2} from fits of chi(T) to the Curie-Weiss law. The 1-D intrachain coupling, J(intra), of [MnTPP]{Ni[S2C2H(CN)]2} and [MnTPP]{Ni[S2C2(CN)2]2} was determined from modeling chiT(T) by the Seiden expression (H = -2JSi.Sj) with J/kB = -8.00 K (-5.55 cm(-1); -0.65 meV) for [MnTPP]{Ni[S2C2H(CN)]2}, J/kB = -3.00 K (-2.08 cm(-1); -0.25 meV) for [MnTP'P]{Ni[S2C2(CN)2]2}, and J/kB = -122 K (-85 cm(-1)) for [MnTP'P]{Ni[S2C2(CN)2]2}. These observed negative J(intra)/kB values are indicative of antiferromagnetic coupling. These materials order as ferrimagnets at 5.5, 2.3, and 8.0 K, for [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2}, respectively, based upon the temperature at which maximum in the 10 Hz chi'(T) data occurs. [MnTP'P]{Ni[S2C2(CN)2]2} has a coercivity of 17,700 Oe and remanent magnetizations of 7250 emu Oe/mol at 2 K and 17 Oe and 850 emu Oe/mol at 5 K; hence, upon cooling it goes from being a soft magnet to being a very hard magnet.  相似文献   

12.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

13.
The effect of temperature on the voltammetric OH adsorption on Pt(111) and Pt(100) electrodes in perchloric acid media has been studied. From a thermodynamic analysis based on a generalized adsorption isotherm, DeltaG degrees , DeltaH degrees , and DeltaS degrees values for the adsorption of OH have been determined. On Pt(111), the adsorption enthalpy ranges between -265 and -235 kJ mol(-1), becoming less exothermic as the OH coverage increases. These values are in reasonable agreement with experimental data and calculated values for the same reaction in gas phase. The adsorption entropy for OH adsorption on Pt(111) ranges from -200 J mol(-1) K(-1) (low coverage) to -110 J mol(-1) K(-1) (high coverage). On the other hand, the enthalpy and entropy of hydroxyl adsorption on Pt(100) are less sensitive to coverage variations, with values ca. DeltaH degrees = -280 kJ mol(-1) and DeltaS degrees = -180 J mol(-1) K(-1). The different dependence of DeltaS degrees with coverage on both electrode surfaces stresses the important effect of the substrate symmetry on the mobility of adsorbed OH species within the water network directly attached to the metal surface.  相似文献   

14.
Thermodynamic properties, such as standard entropy, among others, have been shown to correlate well with formula volume, V(m), thus permitting prediction of these properties on the basis of chemical formula and density alone, with no structural detail required. We have termed these procedures "volume-based thermodynamics" (VBT). We here extend these studies to ambient isobaric heat capacities, C(p,m), of a wide range of materials. We show that heat capacity is strongly linearly correlated with formula volume for large sets of minerals, for ionic solids in general, and for ionic liquids and that the results demonstrate that the Neumann-Kopp rule (additivity of heat capacity contributions per atom) is widely valid for ionic materials, but the smaller heat capacity contribution per unit volume for ionic liquids is noted and discussed. Using these correlations, it is possible to predict values of ambient (298 K) heat capacities quite simply. We also show that the heat capacity contribution of water molecules of crystallization is remarkably constant, at 41.3 ± 4.7 J K(-1) (mol of water)(-1), so that the heat capacities of various hydrates may be reliably estimated from the values of their chemical formula neighbors. This result complements similar observations that we have reported for other thermodynamic differences of hydrates.  相似文献   

15.
Abstract  Alkaline hexacyanoferrate(III) oxidizes 2-methyl-3-pentanone and 2-methylcyclohexanone quite rapidly. Kinetic data show second-order kinetics with respect to hydroxide ion concentrations indicating the formation of hydrates by ketones in aqueous alkaline medium before their reaction with the oxidant. The rate follows direct proportionality with respect to the concentrations of hexacyanoferrate(III) and ketones. Externally added hexacyanoferrate(II) does not affect the reaction velocity indicating the reduction of oxidant takes place after the rate determining step. Orders with respect to various reactants were confirmed by various methods and the overall rate constant of the reaction was calculated by three different variations. Thermodynamic data suggest that 2-methyl-3-pentanone forms the activated complex more easily compared to 2-methylcyclohexanone. Graphical abstract  Second-order in [OH] in the oxidation of 2-methyl-3-pentanone and methyl cyclohexanone by alkaline hexacyanoferrate (III) indicates that oxidation proceeds through the formation of hydrates. Rate constant and thermodynamic parameters at five temperatures were calculated. Mono and dicarboxylic acids were confirmedto be the final oxidation products. Rate law given was—
  相似文献   

16.
Enthalpy measurements have been taken on GdSmTi2O7 and DySmTi2O7 by using a high-temperature differential calorimeter at temperature between 800 and 1655 K. Thermodynamic function, such as heat capacity, entropy and Gibbs energy functions of GdSmTi2O7 and DySmTi2O7, was derived using the data obtained in this study. The results are presented and compared with the data available in the literature. The polynomial expression of enthalpy increments obtained for GdSmTi2O7(s) and DySmTi2O7(s) in the temperature range 298–1700 K is given as: \(\begin{aligned} H_{\text{T}}^{0} - H_{298}^{0} / {\text{J}}\,{\text{mol}}^{ - 1} & = 252.961\,T \, + 1.596 \times 10^{ - 2} \,T^{2} + 3.705 \times 10^{6} \,T^{ - 1} - 89{,}265\quad ({\text{GdSmTi}}_{2} {\text{O}}_{7} ) \\ H_{\text{T}}^{0} - H_{298}^{0} / {\text{J}}\,{\text{mol}}^{ - 1} & = 256.504\,T \, + 1.576 \times 10^{ - 2} \,T^{2} + 3.531 \times 10^{6} \,T^{ - 1} - 89{,}721\quad \left( {{\text{DySmTi}}_{2} {\text{O}}_{7} } \right). \\ \end{aligned}\)  相似文献   

17.
The product, [Pr(C7H5O3)2(C9H6NO)], which was formed by praseodymium nitrate hexahydrate, salicylic acid (C7H6O3), and 8-hydroxyquinoline (C9H7NO), was synthesized and characterized by elemental analysis, UV spectra, IR spectra, molar conductance, and thermogravimetric analysis. In an optimalizing calorimetric solvent, the dissolution enthalpies of [Pr(NO3)3·6H2O(s)], [2 C7H6O3(s) + C9H7NO(s)], [Pr(C7H5O3)2(C9H6NO)(s)], and [solution D (aq)] were measured to be, by means of a solution-reaction isoperibol microcalorimeter, $ \begin{gathered}\Updelta_{\text{s}} H_{\text{m}}^{\theta}\left[ {{ \Pr }\left( {{\text{NO}}_{ 3} } \right)_{ 3} \cdot 6{\text{H}}_{ 2} {\text{O}}\left( {\text{s}} \right), 2 9 8. 1 5{\text{ K}}} \right] \, = - ( 20. 6 6 { } \pm \, 0. 29)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ { 2 {\text{C}}_{7} {\text{H}}_{ 6} {\text{O}}_{ 3} \left( {\text{s}} \right) +{\text{ C}}_{ 9} {\text{H}}_{ 7} {\text{NO}}\left( {\text{s}}\right),{ 298}. 1 5 {\text{ K}}} \right] \, = \, ( 4 2. 2 7 { }\pm \, 0. 3 1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\Updelta_{\text{s}} H_{\text{m}}^{\theta } \left[ {{\text{solutionD }}\left( {\text{aq}} \right), 2 9 8. 1 5 {\text{ K}}} \right] \,= - \left( { 8 9. 1 5 { } \pm \, 0. 4 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} , \\\end{gathered} $ Δ s H m θ [ Pr ( NO 3 ) 3 · 6 H 2 O ( s ) , 2 9 8.1 5 K ] = ? ( 20.6 6 ± 0.2 9 ) kJ mol ? 1 , Δ s H m θ [ 2 C 7 H 6 O 3 ( s ) + C 9 H 7 NO ( s ) , 298.1 5 K ] = ( 4 2.2 7 ± 0.3 1 ) kJ mol ? 1 , Δ s H m θ [ solution D ( aq ) , 2 9 8.1 5 K ] = ? ( 8 9.1 5 ± 0.4 3 ) kJ mol ? 1 , and $ \Updelta_{\text{s}} H_{\text{m}}^{\theta } \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right),{ 298}. 1 5 {\text{ K}}}\right\} \, = - \left( { 4 1.0 4 { } \pm \, 0. 3 3}\right)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ s H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 298.1 5 K } = ? ( 4 1.0 4 ± 0.3 3 ) kJ mol ? 1 , respectively. Through an improved thermochemical cycle, the enthalpy change of the designed coordination reaction was calculated to be $\Updelta_{\text{r}} H_{\text{m}}^{\theta} = \, ( 2 1 3. 1 8\pm0. 6 9)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ r H m θ = ( 2 1 3.1 8 ± 0.6 9 ) kJ mol ? 1 , the standard molar enthalpy of the formation was determined as $ \Updelta_{\text{f}} H_{\text{m}}^{\theta} \left\{ {\left[ {{\Pr }\left( {{\text{C}}_{ 7} {\text{H}}_{ 5} {\text{O}}_{ 3} }\right)_{ 2} \left( {{\text{C}}_{ 9} {\text{H}}_{ 6} {\text{NO}}}\right)} \right]\left( {\text{s}} \right), 2 9 8. 1 5 {\text{K}}}\right\} \, = \, - \, ( 1 8 7 5. 4\pm 3.1)\,{\text{kJ}}\,{\text{mol}}^{ - 1} $ Δ f H m θ { [ Pr ( C 7 H 5 O 3 ) 2 ( C 9 H 6 NO ) ] ( s ) , 2 9 8.1 5 K } = ? ( 1 8 7 5.4 ± 3.1 ) kJ mol ? 1 .  相似文献   

18.
The coordination chemistry of the four phosphines, P{C6H3(o-CH3)(p-Z)}3 where Z = H (1a) or OMe (1b) and P{C6H3(o-CHMe2)(p-Z)}3 Z = H (1c) or OMe (1d) with platinum(II) and palladium(II) is reported. Mononuclear complexes trans-[PdCl2L2](L = 1a,b) and trans-[PtCl2L2](L = 1a-c) have been prepared and the crystal structures of trans-[PdCl2(1b)2] and trans-[PtCl2(1c)2] as their dichloromethane solvates have been determined. The structures show that in these complexes, the ligands adopt g+ g+ a conformations. Examination of the Cambridge Structural Database confirms this to be one of only two conformer types that tri-o-tolylphosphines adopt and the only viable conformer in 4 and 6 coordinate complexes. The binuclear complexes trans-[Pd2Cl4L2](L = 1c,d) are formed even when an excess of the bulky 1c,d is used in the synthesis and the crystal structure of trans-[Pd2Cl4(1c)2] as its chloroform solvate is reported. Reaction of [PtCl2(NCBu(t))2] with 1b-d in refluxing toluene gave the cycloplatinated species [Pt2Cl2(L - H)2] where L - H is phosphine 1b-d deprotonated at one of the ortho-methyl carbon atoms. Variable temperature 31P and 1H NMR spectroscopy reveals that all the complexes reported are fluxional. The processes are analysed in terms of restricted P-C and P-M rotations that give rise to diastereoisomeric rotamers because of the helically chiral orientations of the aryl substituents. For the complexes of the bulky ligands 1c,d, rotation about the P-C bond is slow on the NMR timescale even up to 75 degrees C. The crystal structure of the cyclometallated complex [Pt2Cl2(1d - H)2] has been determined.  相似文献   

19.
Doubly bridged mu-alkoxo-mu-X (X = pyrazolato or acetato) dinuclear MnIII complexes of 2-hydroxy-N-{2-hydroxy-3-[(2-hydroxybenzoyl)amino]propyl}benzamide) (H5L1) and 2-hydroxy-N-{2-hydroxy-4-[(2-hydroxybenzoyl)amino]butyl}benzamide (H5L2), [Mn2(L)(pz)(MeOH)4].xMeOH (1, L = L1, x = 0.5; 2, L = L2, x = 0; Hpz = pyrazole) and [Mn2(L1)(OAc)(MeOH)4] (3), have been prepared, and their structure and magnetic properties have been studied. The X-ray diffraction analysis of 1 (C24.5H34Mn2N4O9.5, triclinic, P, a = 12.2050(7) A, b = 12.7360(8) A, c = 19.2780(10) A, alpha = 99.735(5) degrees , beta = 96.003(4) degrees , gamma = 101.221(5) degrees , V = 2867.6(3) A3, Z = 4), 2 (C25H34Mn2N4O9, triclinic, P, a = 9.4560(5) A, b = 11.0112(5) A, c = 13.8831(6) A, alpha = 90.821(4) degrees , beta = 92.597(4) degrees , gamma = 93.403(4) degrees , V = 1441.29(12) A3, Z = 2), and 3 (C23H32Mn2N2O11, triclinic, P, a = 10.511(5) A, b = 11.713(5) A, c = 13.135(5) A, alpha = 64.401(5) degrees , beta = 74.000(5) degrees , gamma = 66.774(5) degrees , V = 1329.3(10) A3, Z = 2) revealed that all complexes consist of dinuclear units which are further extended into 1D (1 and 3) and 2D (2) supramolecular networks via hydrogen-bonding interactions. Magnetic susceptibility data evidence antiferromagnetic interactions for all three complexes: J = -3.6 cm-1, D approximately 0 cm-1, g = 1.93 (1); J = -2.7 cm-1, D = 0.8 cm-1, g = 1.93 (2); J = -4.9 cm-1, D = 3.8 cm-1, g = 1.95 (3).  相似文献   

20.
The crystal structures of three solvates of zafirlukast [systematic name: cyclopentyl N‐{1‐methyl‐3‐[2‐methyl‐4‐(o‐tolylsulfonylaminocarbonyl)benzyl]‐1H‐indol‐5‐yl}carbamate], viz. the monohydrate, C31H33N3O6S·H2O, (I), the methanol solvate, C31H33N3O6S·CH3OH, (II), and the ethanol solvate, C31H33N3O6S·C2H5OH, (III), have been determined by single‐crystal X‐ray diffraction analysis. All three compounds crystallize in the monoclinic crystal system. Zafirlukast adopts a similar Z‐shaped conformation in all three solvates. The methanol and ethanol solvates are isostructural. The packing of the zafirlukast mol­ecules in all three crystal structures is similar and is expressed by hydrogen‐bonded mol­ecules that are related by translation, along (101) in (I) and along the b axis in (II) and (III). The methanol and ethanol solvent mol­ecules are hydrogen bonded to two mol­ecules of zafirlukast. The water mol­ecule, on the other hand, acts as a connector via hydrogen bonds between three mol­ecules of zafirlukast. The solvent mol­ecules are not released at temperatures below the melting points of the solvates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号