首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a method to recover symmetric and non-symmetric potential functions of inverse Sturm-Liouville problems from the knowledge of eigenvalues. The linear multistep method coupled with suitable boundary conditions known as boundary value method (BVM) is the main tool to approximate the eigenvalues in each iteration step of the used Newton method. The BVM was extended to work for Neumann-Neumann boundary conditions. Moreover, a suitable approximation for the asymptotic correction of the eigenvalues is given. Numerical results demonstrate that the method is able to give good results for both symmetric and non-symmetric potentials.  相似文献   

2.
在建立目标一维热红外温度模型时,提出了热传导方程的一个新的边值问题;通过比较,选择了GE差分格式,求解方程,并进行了稳定性分析;采用虚拟网格点法处理边界条件,得出了GE格式的完整形式;计算实例表明,分组显示方法更适合此类边值问题的实际计算.  相似文献   

3.
There are few techniques available to numerically solve sixth-order boundary-value problems with two-point boundary conditions. In this paper we show that the Sinc-Galerkin method is a very effective tool in numerically solving such problems. The method is then tested on examples with homogeneous and nonhomogeneous boundary conditions and a comparison with the modified decomposition method is made. It is shown that the Sinc-Galerkin method yields better results.

  相似文献   


4.
This paper investigates the analytical approximate solutions of third order three-point boundary value problems using reproducing kernel method. The solution obtained by using the method takes the form of a convergent series with easily computable components. However, the reproducing kernel method can not be used directly to solve third order three-point boundary value problems, since there is no method of obtaining reproducing kernel satisfying three-point boundary conditions. This paper presents a method for solving reproducing kernel satisfying three-point boundary conditions so that reproducing kernel method can be used to solve third order three-point boundary value problems. Results of numerical examples demonstrate that the method is quite accurate and efficient for singular second order three-point boundary value problems.  相似文献   

5.
This paper presents a very first combined application of Ritz method and differential quadrature (DQ) method to vibration problem of rectangular plates. In this study, the spatial partial derivatives with respect to a coordinate direction are first discretized using the Ritz method. The resulting system of partial differential equations and the related boundary conditions are then discretized in strong form using the DQ method. The mixed method combines the simplicity of the Ritz method and high accuracy and efficiency of the DQ method. The results are obtained for various types of boundary conditions. Comparisons are made with existing analytical and numerical solutions in the literature. Numerical results prove that the present method is very suitable for the problem considered due to its simplicity, efficiency, and high accuracy.  相似文献   

6.
A rational differential quadrature method in irregular domains (RDQMID) is investigated to deal with a kind of singularly perturbed problems with boundary layers. Through a transformation, the boundary layer, which may be not straight, is transformed into a segment of a line parallel to one of the Cartesian axes. The rational differential quadrature method (RDQM) is applied to discretize the governing equation. Finally, a direct expansion method of the boundary conditions (DEMBC) is raised to deal with the boundary conditions. Numerical experiments show that RDQMID is of high accuracy, efficiency and easy to programme.  相似文献   

7.
We study a third-order dispersive linear evolution equation on the finite interval subject to an initial condition and inhomogeneous boundary conditions but, in place of one of the three boundary conditions that would typically be imposed, we use a nonlocal condition, which specifies a weighted integral of the solution over the spatial interval. Via adaptations of the Fokas transform method (or unified transform method), we obtain a solution representation for this problem. We also study the time periodic analog of this problem, and thereby obtain long time asymptotics for the original problem with time periodic boundary and nonlocal data.  相似文献   

8.
Recent years have witnessed growing interests in solving partial differential equations by deep neural networks, especially in the high-dimensional case. Unlike classical numerical methods, such as finite difference method and finite element method, the enforcement of boundary conditions in deep neural networks is highly nontrivial. One general strategy is to use the penalty method. In the work, we conduct a comparison study for elliptic problems with four different boundary conditions, i.e., Dirichlet, Neumann, Robin, and periodic boundary conditions, using two representative methods: deep Galerkin method and deep Ritz method. In the former, the PDE residual is minimized in the least-squares sense while the corresponding variational problem is minimized in the latter. Therefore, it is reasonably expected that deep Galerkin method works better for smooth solutions while deep Ritz method works better for low-regularity solutions. However, by a number of examples, we observe that deep Ritz method can outperform deep Galerkin method with a clear dependence of dimensionality even for smooth solutions and deep Galerkin method can also outperform deep Ritz method for low-regularity solutions.Besides, in some cases, when the boundary condition can be implemented in an exact manner, we find that such a strategy not only provides a better approximate solution but also facilitates the training process.  相似文献   

9.
In this paper, finite volume method is used to solve a one-dimensional parabolic inverse problem with source term and Neumann boundary conditions for the first time. Some advantages of this approach are developing difference schemes and maintaining certain properties of the physics of the problems, especially for the treatment of the source term and the unknown boundary conditions. Numerical results show that our method is more effective.  相似文献   

10.
A meshless local moving Kriging method for two-dimensional solids   总被引:1,自引:0,他引:1  
An improved meshless local Petrov-Galerkin method (MLPG) for stress analysis of two-dimensional solids is presented in this paper. The MLPG method based on the moving least-squares approximation is one of the recent meshless approaches. However, accurate imposition of essential boundary conditions in the MLPG method often presents difficulties because the MLPG shape functions does not possess the Kronecker delta property. In order to eliminate this shortcoming, this approach uses the moving Kriging interpolation instead of the traditional moving least-square approximation to construct the MLPG shape functions, and then, the Heaviside step function is used as the test function over a local sub-domain. In this method, the essential boundary conditions can be enforced as the FEM, no domain integration is needed and only regular boundary integration is involved. In addition, the sensitivity of several important parameters of the present method is mainly studied and discussed. Comparing with the original meshless local Petrov-Galerkin method, the present method has simpler numerical procedures and lower computation cost. The effectiveness of the present method for two-dimensional solids problem is investigated by numerical examples in this paper.  相似文献   

11.
Exact absorbing boundary conditions for a linearized KdV equation are derived in this paper. Applying these boundary conditions at artificial boundary points yields an initial‐boundary value problem defined only on a finite interval. A dual‐Petrov‐Galerkin scheme is proposed for numerical approximation. Fast evaluation method is developed to deal with convolutions involved in the exact absorbing boundary conditions. In the end, some numerical tests are presented to demonstrate the effectiveness and efficiency of the proposed method.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

12.
We propose a Schwarz-based domain decomposition method for solving a dispersion equation consisting on the linearized KdV equation without the advective term, using simple interface operators based on the exact transparent boundary conditions for this equation. An optimization process is performed for obtaining the approximation that provides the method with the fastest convergence to the solution of the monodomain problem.  相似文献   

13.
In this paper the boundary integral expression for a one-dimensional wave equation with homogeneous boundary conditions is developed. This is done using the time dependent fundamental solution of the corresponding hyperbolic partial differential equation. The integral expression developed is a generalized function with the same form as the well-known D'Alembert formula. The derivatives of the solution and some useful invariants on the characteristics of the partial differential equation are also calculated.The boundary element method is applied to find the numerical solution. The results show excellent agreement with analytical solutions.A multi-step procedure for large time steps which can be used in the boundary element method is also described.In addition, the way in which boundary conditions are introduced during the time dependent process is explained in detail. In the Appendix the main properties of Dirac's delta function and the Heaviside unit step function are described.  相似文献   

14.
Many physical subjects are modeled by nonclassical parabolic boundary value problems with nonlocal boundary conditions replacing the classic boundary conditions. In this article, we introduce a new numerical method for solving the one‐dimensional parabolic equation with nonlocal boundary conditions. The approximate proposed method is based upon the composite spectral functions. The properties of composite spectral functions consisting of terms of orthogonal functions are presented and are utilized to reduce the problem to some algebraic equations. The method is easy to implement and yields very accurate result. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

15.
By incorporating the Legendre multiwavelet into the discontinuous Galerkin (DG) method, this paper presents a novel approach for solving Poisson’s equation with Dirichlet boundary, which is known as the discontinuous Legendre multiwavelet element (DLWE) method, derive an adaptive algorithm for the method, and estimate the approximating error of its numerical fluxes. One striking advantage of our method is that the differential operator, boundary conditions and numerical fluxes involved in the elementwise computation can be done with lower time cost. Numerical experiments demonstrate the validity of this method. Furthermore, this paper generalizes the DLWE method to the general elliptic equations defined on a bounded domain and describes the possibilities of constructing optimal adaptive algorithm. The proposed method and its generalizations are also applicable to some other kinds of partial differential equations.  相似文献   

16.
This paper focuses on solving the two point boundary value problem, in which boundary conditions are systems of nonlinear equations. The shooting method was used together with a combination of Newton’s method and Broyden’s method, to update the initial values of the differential equations. The experiments showed that the proposed method performed well, in the sense that the overall amount of work was less than that of the Newton Shooting method.  相似文献   

17.
Nanofluid flow is one of the most important areas of research at the present time due to its wide and significant applications in industry and several scientific fields. The boundary layer flow of nanofluids is usually described by a system of nonlinear differential equations with boundary conditions at infinity. These boundary conditions at infinity cause difficulties for any of the series method, such as Adomian’s method, the variational iteration method and others.The objective of the present work is to introduce a reliable method to overcome such difficulties that arise due to an infinite domain. The proposed scheme, that we will introduce, is based on Adomian’s decomposition method, where we will solve a system of nonlinear differential equations describing the boundary layer flow of a nanofluid past a stretching sheet.  相似文献   

18.
In this paper we propose a new modified recursion scheme for the resolution of boundary value problems (BVPs) for second-order nonlinear ordinary differential equations with Robin boundary conditions by the Adomian decomposition method (ADM). Our modified recursion scheme does not incorporate any undetermined coefficients. We also develop the multistage ADM for BVPs encompassing more general boundary conditions, including Neumann boundary conditions.  相似文献   

19.
An efficient algorithm is proposed to solve the steady-state nonlinear heat conduction equation using the boundary element method (BEM). Nonlinearity of the heat conduction equation arises from nonlinear boundary conditions and temperature dependence of thermal conductivity. Using Kirchhoff's transformation, the case of temperature dependence of thermal conductivity can be transformed to the nonlinear boundary conditions case. Applying the BEM technique, the resulting matrix equation becomes nonlinear. The nonlinearity, however, only involves the boundary nodes that have nonlinearboundary conditions. The proposed local iterative scheme reduces the entire BEM matrix equation to a smaller matrix equation whose rank is the same as the number of boundary nodes with nonlinear boundary conditions. The Newton-Raphson iteration scheme is used to solve the reduced nonlinear matrix equation. The local iterative scheme is first applied to two one-dimensional problems (analytical solutions are possible) with different nonlinear boundary conditions. It is then applied to a two-region problem. Finally, the local iterative scheme is applied to two cavity problems in which radiation plays a role in the heat transfer.  相似文献   

20.
The aim of this paper is to present an efficient and reliable treatment of the homotopy perturbation method (HPM) for two dimensional time-fractional wave equation (TFWE) with the boundary conditions. The fractional derivative is described in the Caputo sense. The initial approximation can be determined by imposing the boundary conditions. The method provides approximate solutions in the form of convergent series with easily computable components. The obtained results shown that the technique introduced here is efficient and easy to implement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号