首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

2.
Simulation of fragments of potential energy surface for systems CH4 + CBr 3 + , CH4 + CBr 3 + AlBr 4 ? , CH4 + CCl 3 + AlCl 4 ? , and CH4 + CCl 3 + Al2Cl 7 ? was performed by DFT-B3LYP and DFT-PBE methods. The important role of nucleophilic assistance in methane halogenation by these superelectrophiles was confirmed. These reactions occur with a synchronous hydride transfer from methane to the electrophile within the cyclic transition states in linear C-H-C fragment of the rings and a generation of a C-Hlg bond between the carbon atom of the arising methyl group and the halogen atom of the electrophile. The nucleophilic assistance from the unshared electron pair of this halogen atom provides the lowering of the potential barriers to methane halogenation by complexes CBr 3 + AlBr 4 ? , CCl 3 + AlCl 4 ? , and CCl 3 + Al2Cl 7 ? to the values of the order of 20 kcal mol?1. These essential features of the mechanism of methane halogenation are independent of the halogen nature and are retained on going from the model electrophiles to the real ones.  相似文献   

3.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)?+?1·Cs+(nb) ? 1·M+(nb)?+?Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+?=?Li+, Na+, K+, Rb+, H3O+, NH4 +, Tl+; 1?=?beauvericin; aq?=?aqueous phase, nb?=?nitrobenzene phase) were determined. Moreover, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Rb+?<?Na+, H3O+?<?Tl+?<?NH 4 +? <?K+?<?Li+.  相似文献   

4.
Interfacial distribution of trace amounts of ReO 4 ? ions between aqueous solutions of mineral acids and solutions of diphosphoryl-substituted aza podand [Ph2P(O)CH2CH2OCH2CH2]2NBu (I) in dichloroethane was studied. The stoichiometry of extracted complexes was determined, the influence of HClO4, HNO3, HCl, and H2SO4 concentration in aqueous phase and the nature of organic solvent on the efficiency of transition of ReO 4 ? ions into organic phase was considered. Aza podand I shows larger extraction ability toward Re(VII) than monophosphorylated amines. The possibility of selective extraction and preconcentration of ReO 4 ? ions by a complex-forming sorbent obtained by the noncovalent binding of compound I on the surface of carbon nanotubes was shown.  相似文献   

5.
Eleven isomers with the PyC2H 5 composition, which include three conventional (1–3) and eight distonic radical cations (4–11), have been generated and in most cases successfully characterized in the gas phase via tandem-in-space multiple-stage pentaquadrupole MS2 and MS3 experiments. The three conventional radical cations, that is, the ionized ethylpyridines C2H5-C5H4N (1–3), were generated via direct 70-eV electron ionization of the neutrals, whereas sequences of chemical ionization and collision-induced dissociation (CID) or mass-selected ion-molecule reactions were used to generate the distonic ions H2C·?C5H4N+?CH3 (4–6), CH3?C5H4N+?CH 2 · (7–9), C5H5N+?CH2CH 2 · (10), and C5H5N+?CH·?CH3 (11). Unique features of the low-energy (15-eV) CID and ion-molecule reaction chemistry with the diradical oxygen molecule of the isomers were used for their structural characterization. All the ion-molecule reaction products of a mass-selected ion, each associated with its corresponding CID fragments, were collected in a single three-dimensional mass spectrum. Ab initio calculations at the ROMP2/6–31G(d, p)//6–31G(d, p)+ZPE level of theory were performed to estimate the energetics involved in interconversions within the PyC2H5 system, which provided theoretical support for facile 4?7 interconversion evidenced in both CID and ion-molecule reaction experiments. The ab initio spin densities for the a-distonic ions 4–9 and 11 were found to be largely on the methylene or methyne formal radical sites, which thus ruled out substantial odd-spin derealization throughout the neighboring pyridine ring. However, only 8 and 9 (and 10) react extensively with oxygen by radical coupling, hence high spin densities on the radical site of the distonic ions do not necessarily lead to radical coupling reaction with oxygen. The very typical “spatially separated” ab initio charge and spin densities of 4–11 were used to classify them as distonic ions, whereas 1–3 show, as expected, “localized” electronic structures characteristic of conventional radical ions.  相似文献   

6.
The repulsive nature of the interaction between the cation radicals of the π-[terthiophene] 2 2+ dimers, 1 2 2+ , found in crystals has been concluded from B3LYP/6-31+G(d) calculations. Hence, the bonding component is weaker than the Coulombic repulsion, consistent to recent findings for [TTF]·+–[TTF]·+ interactions (TTF = tetrathiafulvalene). The existence of 1 2 2+ dimers originates from the cation+–anion? electrostatic interactions, which exceeds the combined effect of the 1 .+1 .+ plus (SbF6)?–(SbF6)? repulsions in 1 2(SbF6)2, similar to what is found for [TTF]·+–[TTF]·+ interactions in [TTF]2(ClO4)2 aggregates and in crystals. The long, multicenter bond in 1 2 2+ is characterized as a 2e?/10c bond from an Atoms-in-molecules analysis.  相似文献   

7.
Strong (orange/red) colourations resulting immediately upon the exposure of nitrogen dioxide and its equilibrium dimer (dinitrogen tetroxide) to various aromatic hydrocarbons (ArH) are shown to arise from the nitrosonium EDA or electron donor-acceptor complexes [ArH, NO+NO 3 ? ]. The latter exhibit diagnostic charge-transfer absorptions and characteristic N-O stretching bands in the UV-vis and IR spectra, respectively, that relate directly to ArH/NO+ interactions extant in the EDA complexes previously derived from the authentic nitrosonium salt, NO+PF 6 - . Time-resolved picosecond spectroscopy establishes the charge-transfer excited state of [ArH, NO+NO 3 ? ] to be essentially identical to that from [ArH, NO+BF 4 ? ]. Furthermore, the same temporal decay of the spectral transients (ArH+?) from both systems indicates minimal ion-pairing effects of the counterions (NO 3 ? and BF 4 ? ) on the kinetics of back electron transfer.  相似文献   

8.
The gas-phase reactions of negative ions (O-., NH 2 ? , C2H5NH?, (CH3)2N?, C6H 5 t- , and CH3SCH 2 ? ) with fluorobenzene and 1,4-difluorobenzene have been studied with Fourier transform ion cyclotron resonance mass spectrometry. The O?. ion reacts predominantly by (1) proton abstraction, (2) formal H 2 +. abstraction, and (3) attack on an unsubstituted carbon atom. In addition to these processes, attack on a fluorine bearing carbon atom yielding F? and C6H4FO? ions occurs with 1,4-difluorobenzene. Site-specific deuterium labeling reveals the occurrence of competing 1,2-, 1,3-, and 1,4-H 2 +. abstractions in the reaction of O?. with fluorobenzene. Attack of the O?. ion on the 3- and 4-positions in fluorobenzene with formation of the 3- and 4-fluorophenoxide ions, respectively, is preferred to reaction at the 2-position, as indicated by the relative extent of loss of a hydrogen and a deuterium atom in the reactions with labeled fluorobenzenes. The NH 2 ? , C2H5NH?, (CH3)2N?, C6H 5 ? , and CH3SCH 2 ? anions react with fluoroberuene and 1,4-difluorobenzene only by proton abstraction. The relative importance of H+ and D+ abstraction in the reaction of these anions with labeled fluorobenzenes indicates that the 2-position in fluorobenzene is more acidic than the 3- and 4-positions, suggesting that the literature value of the gas-phase acidity of this compound (ΔH acid o = 1620 ± 8 kJ mol?1) refers to the former site. Based on the occurrence of reversible proton transfer between the CH3O? ion and 1,4-difluorobenzene, the ΔH acid o of this compound is redetermined to be 1592 ± 8 kJ mol?1.  相似文献   

9.
The limiting molar conductances Λ0 of potassium deuteroxide KOD in D2O and potassium hydroxide KOH in H2O were determined at 25°C as a function of pressure to disclose the difference in the proton-jump mechanism between an OH? (OD?) and a H3O+ (D3O+) ion. The excess conductance of the OD? ion in D2O λ E O (OD -), as estimated by the equation $$\lambda _E^O (OD^ - ) = \Lambda ^O (KOD/D_2 O) - \Lambda ^O (KCl/D_2 O)$$ increases a little with pressure as well as the excess conductance of the OH? ion in H2O $$\lambda _E^O (OH^ - ) = \Lambda ^O (KOH/H_2 O) - \Lambda ^O (KCl/H_2 O)$$ However, their rates of increase with pressure are much smaller than those of the excess deuteron and proton conductances, λ E O (D +) and λ E O (H +). With respect to the isotope effect on the excess conductance, λ E O (OH -)/λ E O (D +) decreases with presure as in the case of λ E O (H +)/λ E O (D +), but the value of λ E O (OH -)/λ E O (OD -) itself is much larger than that of λ E O (H +)/λ E O (D +) at each pressure. These results are ascribed to the difference in the pre-rotation of water molecules, which is brought about by the difference in the intial orientation of the rotating water molecule adjacent to the OH? (OD?) or the H3O+ (D3O+) ion.  相似文献   

10.
Primary processes in the reduction of p-nitroacetophenone (p-NAP) by ascorbic acid (AA) in water photosensitized by thiacyanine dimers M 2 2? have been considered. For M 2 2? , the quantum yields of fluorescence and intersystem crossing to the triplet state (M 2 2? )T increases in comparison to the monomers M?. The dimers (M 2 2? )T enter into the reactions of both one-electron photoreduction by ascorbic acid to give AA and M 2 3? and one-electron photooxidation by p-nitroacetophenone to give p-NAP and the dimeric radical anion M 2 ? which dissociates to M? and M· within 25–30 μs. The primary oxidative or reductive photosensitization in the ternary systems containing (M 2 2? )T, p-NAP, and AA affords p-NAP and AA.  相似文献   

11.
The complexes [Et2NH2] 3 + [BiCl6]3? (I), [NH4]+[BiI4(C5H5N)2]?·2C5H5N (II), [Ph3MeP] 2 + [BiI5]2? (III), [Ph3MeP] 2 + [BiI5(C5H5N)]2?·C5H5N (IV), [Ph3MeP] 3 + [Bi3I12]3? (V), [Ph3(i-Pr)P] 3 + [Bi3I12]3?·2Me2C=O (VI), [Ph3BuP] 2 + [Bi2I8·2Me2C=O]2? (VII), and [Ph3BuP] 2 + [Bi2I8·2Me2S=O]2? (VIII) were obtained by reactions of bismuth iodide with ammonium and phosphonium iodides in acetone, pyridine, or dimethyl sulfoxide.  相似文献   

12.
Complexes of Cu(II) and Co(II) nitrates with 3-phenyl-5,5-dimethyl-5,6-dihydro-1,2,4-triazolo[3,4-a]isoquinoline (L0) of the composition [CuL 2 0 (NO3)2] (I) and [CoL 2 0 (NO3)2] · CH3CN (II) are synthesized and their crystal structures are determined by X-ray diffraction. The L0 ligand is coordinated to the metal atoms through the N atom in position 2 of triazole fragment. The coordination polyhedron of the Cu(II) atom is a square with two additional axial vertices, while that of the Co(II) atom is a tetrahedron with two additional vertices. The NO 3 ? groups in the structures of I and II perform similar anisobidentate function. Complexes I and II are studied by IR and electronic spectroscopy.  相似文献   

13.
Using a one-center-method, treating the inner shells statistically, the valence-shell, however, by quantum mechanics, the equilibrium internuclear distances and total molecular energies have been computed for CH4, SiH4, GeH4, SnH4, PbH4, BH 4 ? , AlH 4 ? , GaH 4 ? , InH 4 ? , TlH 4 ? , NH 4 + , PH 4 + , AsH 4 + , SbH 4 + , and BiH 4 + . The results are in good agreement with experimental data as well as with theoretical values.  相似文献   

14.
The elimination of ethene from CH3CH2NH=CH 2 + is characterized by ab initio procedures. This reaction occurs through several asynchronous stages, but without passing through formal intermediates. A potential energy barrier to hydrogen migration from the β carbon to N is largely determined by the energy required to cleave the CN bond, but is lowered slightly by H transfer from the β to the α carbon and then to N. The complex [C2H 5 + NH=CH2] is bypassed, even though that complex could exist at energies only slightly above that of the transition state for ethene elimination. Furthermore, conversion of a substantial reverse activation energy into energy of motion causes CH2=NH 2 + and CH2=CH2 to dissociate faster than they can form [CH2=NH 2 + CH2=CH2]. Comparison of results for CH3CH2NH=CH 2 + to ab initio ones for methane from CH3CH2CH 3 + and elimination of ethene from CH3CH2O=CH 2 + and CH3CH2CH=OH+ reveals that these dissociations occur in a similar but, in each case, a distinct series of asynchronous steps or stages, and that there is no sharp demarcation between concerted and stepwise eliminations as presently defined. In dissociations of CH3CH2NH=CH 2 + , loss of electron density at the C in the breaking N bond leads the transfer of electron density to that carbon by migration of a hydrogen from the adjacent C. We attribute this to a requirement for the moving H to be close to Cα before the moving H can start to develop covalent bonding to Cα. It is also concluded that elimination of ethene from CH3CH2NH=CH 2 + avoids a Woodward-Hoffmann symmetry-imposed barrier by H migrating sufficiently from the β to the α carbon on the way to N, so that the dissociation is essentially a 1,1 rather than a 1,2 elimination.  相似文献   

15.
The metastable decompositions of trimethylsilylmethanol, (CH3)3SiCH2OH (MW: 104, 1) and methoxytrimethylsilane, (CH3)3SiOCH3 (MW: 104, 2) upon electron ionization have been investigated by use of mass-analyzed ion kinetic energy (MIKE) spectroscopy and D labeling. The metastable ions of 1 ·+ decompose to give the fragment ions m/z 89 (CH 3 · loss) and 73 (·CH2OH loss), whereas those of 2 ·+ only yield the fragment ion m/z 89 (CH 3 · loss). The latter fragment ion is generated by loss of a methyl radical from the trimethylsilyl group via a simple cleavage reaction as shown by D labeling. However, the fragment ions m/z 89 and 73 from 1 ·+ are generated following an almost statistical exchange of the original methyl and methylene hydrogen atoms in the molecular ion as shown also by D labeling. This exchange indicates a complex rearrangement of the molecular ion of 1 ·+ prior to metastable decomposition for which as key step a 1,2-trimethylsilyl group migration from carbon to oxygen is suggested. A different behavior is also found between the source-generated m/z 89 ions from 1 ·+ which decompose in the metastable time region to give ions m/z 61 by loss of ethylene and those from 2 ·+ which decompose in the metastable region to yield ions m/z 59 by elimination of formaldehyde.  相似文献   

16.
Ab initio calculations establish that CH3O+=CHCH3 (1) rearranges in gas phase isolation to CH2=O+C2H5 (2) directly rather than through CH3OCH2CH 2 + (3). The reaction is predicted to be antarafacial, in accord with the Woodward-Hoffmann (W-H) predictions. We predict an activation energy of 212.0 kJ/mol for this process at the QCISD(T)/6-311G**//MP2/6-311G** level. We also reinvestigated the degenerate rearrangement of CH3O=CH 2 + by a 1,3-sigmatropic shift. The W-H model is not a good one for the transition state (TS) for the latter reaction because the π bonding has been completely broken off. That TS is stabilized by three-center bonding between the carbons and the hydrogen being transferred. We also examined the questions of the importance of polarization functions on hydrogen and a set of outer valence functions on all the atoms in describing these hydrogen transfer TSs, and whether it is necessary to include these functions in the TS optimization runs. For the rearrangements we studied, polarization functions on hydrogen are crucial only for 1,2 hydrogen shifts. The 6-31G* basis set is adequate and good for the optimization of TSs of other ring sizes. For the 1,3 and 1,4 shifts we examined, a combination of both outer valence functions and polarization functions on hydrogen causes reductions in the computed activation energies ranging from 5.9 kJ/mol for the 1,4 shift at the RHF level to 15.6 kJ/mol for the 1,3 shift at the MP2 level.  相似文献   

17.
Cs3[UO2(CH3COO)3]2[UO2(CH3COO)(NCS)2(H2O)] (I) and Cs5[UO2(CH3COO)3]3[UO2 (NCS)4(H2O)] · 2H2O (II) have been synthesized via the reaction between uranyl acetate and cesium thiocyanate in aqueous solution. According to single-crystal X-ray diffraction data, both compounds crystallize in monoclinic system with the unit cell parameters a = 18.7036(5) Å, b = 16.7787(3) Å, c = 12.9636(3) Å, β = 92.532(1)°, space group C2/c, Z = 4, R = 0.0434 (I); and a = 21.7843(3) Å, b = 24.6436(5) Å, c = 13.1942(2) Å, β = 126.482(1)°, space group Cc, Z = 4, R = 0.0273 (II). Uranium-containing structural units of compound (I) are mononuclear [UO2(CH3COO)3]? and [UO2(CH3COO)(NCS)2(H2O)]? moieties, which correspond to the AB 3 01 and AB01M 3 1 crystallochemical groups (A = UO 2 2+ , B01 = CH3COO?, M1 = NCS? and H2O). The structure of compound II is built of [UO2(CH3COO)3]? and [UO2(NCS)4(H2O)]2? complexes, which belong to the AB 3 01 and AM 5 1 crystallochemical groups, respectively. Uranium-containing complexes in both structures are linked into a framework by hydrogen bonds and electrostatic interactions with cesium cations. The IR spectra of compounds I and II agree well with X-ray diffraction data.  相似文献   

18.
Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion ·CH2CH2CH?OH (2) and its enol-keto tautomers CH3CH=CHOH (1 ) and CH3CH2CH=O (3). The major fragmentation of metastable 1–3 is H· loss to yield the propanoyl cation, CH3CH2C≡O+. This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH+ OH is coproduced from all three precursors. The CAD and neutralization-reionization (+NR+) spectra of keto ion 3 are substantially different from those of tautomers 2 and 1. Hence, 3 without sufficient energy for decomposition (i. e. , “stable” 3) does not isomerize to the ther-modynamically more stable ions 2 or 1, and the 1,4-H rearrangement H-CH2CH2CH=O(3 ) → CH2CH2CH+ O-H (2 ) must require an appreciable critical energy. Although the fragment ion abundances in the + NR + (and CAD) spectra of 1 and 2 are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O ions in the +NR+ spectra) are markedly distinct and independent of the internal energy of 1 and 2 . Furthermore, 1 and 2 show different MI spectra. Based on these data, distonic ion 2 does not spontaneously rearrange to enol ion 1 (which is the most stable C3H6O of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 ) and allyl alcohol (5 ) isomerize readily to 2 , via ring opening and 1,2-H? shift, respectively. The sample found to generate the purest 2 is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 by a least-motion reaction cogenerate detectable quantities of enol ion 1 , or the enol ion of acetone (CH2=C(CH3)OH, 6 ), or methyl vinyl ether ion (CH3OCH=CH 2 , 7 ). Ion 6 is coproduced from samples that contain the —CH2—CH(OH)—CH2— substructure, whereas 7 is coproduced from compounds with methoxy substituents. Compared to CAD, metastable ion characteristics combined with neutralization-reionization allow for a superior differentiation of the ions studied.  相似文献   

19.
Alternating-current electrochemical synthesis is used to obtain for the first time halogenocuprates of an allyl derivative of phosphonium of the composition (CH2=CHCH2(C6H5)3P)CuX2 (X = Br (I), Cl (II)). Compound I crystallizes in the space group P21, a = 9.6341(3) Å, b = 12.4167(4) Å, c = 9.9618(4) Å, β = 117.484(5)°, Z = 2. Compound II crystallizes in the space group P21/n, a = 9.9725(5) Å, b = 15.4586(8) Å, c = 13.7557(5) Å, β = 90.429(4)°, Z = 4. In the structures of I and II quasilinear CuX 2 ? anions are held by C-H…X hydrogen bonds inside a framework formed by the stacking of phenyl groups from CH2=CHCH2(C6P5)3P+ cations. Allyl groups are not involved in coordination with copper(I) atoms.  相似文献   

20.
The Diels-Alder reaction between substituted anthracenes 1a?1j and 4-phenyl-1,2,4-triazoline-3,5 (2) is studied. In all cases except one, the reaction proceeds on the most active 9,10-atoms of substituted anthracenes. The orthogonality of the two phenyl groups at the 9,10-position of diene 1a is found to shield 9,10-reactive centers. No dienophiles with C=C bonds are shown to participate in the Diels-Alder reaction with 1a; however, the reaction 1a + 2 proceeds with the very active dienophile 2,4-phenyl-1,2,4-triazoline-3,5-dione. It is shown that attachment occurs on the less active but sterically accessible 1,4-reactive center of diene 1a. The structure of adduct 3a is proved by 1H and 13C NMR spectroscopy and X-ray diffraction analysis. The following parameters are obtained for reaction 1a + 2 ? 3a in toluene at 25°C: K eq = 2120 M?1, ΔH f = 58.6 kJ/mol, ΔS f = ?97 J/(mol K), ΔV f = ?17.2 cm3/mol, ΔH b = 108.8 kJ/mol, ΔS b = 7.3 J/(mol K), ΔV b = ?0.8 cm3/mol, ΔH r-n = ?50.2 kJ/mol, ΔS r-n = ?104.3 J/(mol K), ΔV r-n = ?15.6 cm3/mol. It is concluded that the values of equilibrium constants of the reactions 1a?1j + 2 ? 3a?3j vary within 4 × 101?1011 M?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号