首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singly and doubly charged cluster ions of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using collision-induced dissociation (CID) and ion-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster ions and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product ions. CID profiles, and measurements of changing precursor and product ion signal intensity as a function of applied collision voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ ions to determine the influence of the cation on the relative stability of cluster ions. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ ions the most difficult to dissociate.  相似文献   

2.
3.
A study of factors influencing the collision-induced dissociation (CID) rate of strongly bound diatomic ions effected via resonance excitation in a quadrupole ion trap is presented. From these studies, an approach to measuring the CID rates is described wherein product ion recovery is optimized and the effect of competitive processes (e.g., parent ion ejection and product ion reactions) on rate measurements are prevented from influencing rate measurements. Tantalum oxide ions (dissociation ENERGY = 8.2 eV), used as a model system, were formed via reactions of glow discharge generated Ta+ ions with residual gases in the ion trap. Neon (0.5 mtorr) was found to be a more favorable target gas for the dissociation of TaO+ than He and Ar, but collisional activation of TaO+ ions in neon during ion isolation by mass selective instability necessitated ion cooling prior to dissociation. A 25 ms delay time at qz = 0.2 allowed for kinetic cooling of stored TaO+ ions and enabled precise dissociation rate measurements to be made. CID of TaO+ was determined to be most efficient at qz = 0.67 (226 kHz for m/z 197). Suitable resonance excitation voltages and times ranged from 0.56 to 1.2 Vp-p and 1 to 68 ms, respectively. Under these conditions, measurement of rates approaching 80 s−1 for the dissociation of TaO+ could be made without significant complications associated with competing processes, such as ion ejection.  相似文献   

4.
Collision-induced dissociation and infrared multiphoton dissociation of ions formed in di- and tri-ethylamine, di- and tri-n-propylamine, and di-isopropylamine were investigated by Fourier-transform ion-cyclotron resonance mass spectrometry. Molecular ions of all amines except di-n-propylamine produced similar fragment ions when subjected to either dissociation technique. The initial fragmentation involved CαCβ bond cleavage, loss of an alkyl radical, and formation of an immonium ions. Subsequent fragmentations of the immonium ions produced by both dissociation mechanisms involved McLafferty-type rearrangements and loss of alkenes. The molecular ion of di-n-propylamine fragmented by a different mechanism when subjected to infrared irradiation. Protonated molecules of di- and tri-n-propylamine yielded C3H6 and an ammonium ion upon infrared multiphoton dissociation, while protonated molecules of the other amines did not dissociate when this technique was applied. In contrast, collision-induced dissociation produced fragmentation for all protonated molecules. Explanation of the different fragmentations observed for the two dissociation techniques is given in terms of a mechanism involving a tight transition state for protonated di- and tri-n-propylamine dissociation.  相似文献   

5.
Low energy collisionally activated dissociations (CAD) of doubly protonated peptides incorporating cysteic acid and arginine residues have been studied. Deuterium labeling experiments have established that loss of the elements of H2SO3 occurs with cleavage of one CH bond and transfer of the hydrogen to a neutral fragment. Prominent d-type ions were observed corresponding to cleavage at the cysteic acid residue. The analysis of structural analogs suggested that the unexpectedly low energy requirement for this process is attributable to a charge-proximal process promoted by intra-ionic interaction of the arginine and cysteic acid side chains. CAD (in the collision hexapole of a tandem quadrupole instrument) of electrospray source-formed fragment ions established that the d-type ions can form via b-type ions; there was no evidence of formation via (a n + 1) or (b n — H2SO3) ions. The equivalent d-ion was observed, albeit with lesser abundance, when the cysteic acid residue was replaced by aspartic acid, but not by glutamic acid.  相似文献   

6.
Electrospray ionization tandem mass spectrometry has the potential to be widely used as a tool for polymer structural characterization. However, the backbones or molecular chains of many industrial polymers including functional polyglycols are often difficult to dissociate in tandem mass spectrometers using low energy collision-induced dissociation (CID). We present a method that uses Li+ and transition metal ions such as Ag+ as the cationization reagents for electrospray ionization in an ion trap mass spectrometer. It is shown that lithium and transition metal polyglycol adduct ions can be readily fragmented with low energy CID. Comparative results from different cationization reagents in their abilities of producing both MS spectra and CID spectra are shown. This method opens the possibility of using conventional and readily available low energy CID tandem MS to study polyglycol structures.  相似文献   

7.
Fixed-charge derivatives have been used to direct the fragmentation pattern of high energy collision-induced dissociation tandem mass spectra for several years. It has been noted that a fixed-charge placed at a terminus of a peptide will simplify the pattern of fragment ions that are produced in collision-induced dissociation. Trimethylammoniumacetyl, dimethyloctylammoniumacetyl, and triphenylphosphoniumethyl derivatives have been cited in the literature for this purpose and many other structures are possible. This work compares the cited derivatives as well as some new structures. The criteria used include the ease of synthesis and purification of the derivatized peptide and the effects of the derivative on the peptide sequence fragment ion yield and ionization efficiency. The trimethylammoniumacetyl derivative is concluded to be the most practical for general use, whereas the dimethyloctylammoniumacetyl derivative is found to be desirable for use with hydrophilic peptides.  相似文献   

8.
The effect of the addition of argon and other gases upon the intensities of negative ion species formed in an electron impact source has been investigated. The negative ion current generated for a series of aromatic compounds has been investigated as a function both of sample and argon pressure in the ion source of a ZAB-2F mass spectrometer. For all compounds studied, a striking enhancement of molecular negative ion current occurred on increasing either the presure of the sample or of argor. The results are consistent with thermalization of the 50 eV electrons by collisions with neutral molecules in the high pressure ion source and collisional stabilization of the negative ions initially formed. Analytical applications of the technique are discussed.  相似文献   

9.
Unimolecular and collision-induced dissociations of ArN+2 producedby electron impact ionization (ArN+2 → Ar+ and ArN+2 → N+2) were investigated quantitatively using a double-focusing sector type mass spectrometer. Information gained is relevant for the detection efficiency of clusters and for the development of appropriate theoretical fragmentation models.  相似文献   

10.
Ion cyclotron resonance results show that the ions formed by single and by double McLafferty rearrangement in 2-ethyl-5-propylcyclopentanone have neither keto nor enol structures. Collision-induced dissociations confirm that these ions are structurally distinct from the keto ions formed directly by electron impact upon the corresponding neutral molecules. It is suggested that the major reaction path for olefin loss from 2-ethyl-5-propylcyclopentanone and from 2-ethylcyclopentanone involves ring opening followed by hydrogen transfer to carbon in the alkene elimination step. Only in metastable ions is there evidence for the occurrence of the normal McLafferty rearrangement. The techniques mentioned in the title, together with conventional low and high resolution mass spectrometry, have been used to characterize the sometimes complex mixtures of cyclic and acyclic ions formed from cyclopentanone and some of its alkyl derivatives. Use of a number of different techniques of ion structure characterization allowed corroboration of particular results by quite distinct methods and it also allowed the effects of ion internal energy and lifetime upon structure to be partly elucidated.  相似文献   

11.
The identification of an ion observed in the high-energy collision-induced dissociation spectra of several model peptides is reported. The ion, observed at m/z 99 for the peptide pentaalanine (Ala5) and designated a2-16, is shown to have an elemental formula of C5H9NO by high-resolution peak matching. The precursor ion spectrum of the a2-16 ion and product ion spectra of the a2 and the a2+ 1 ions for Ala5 suggest that this ion is formed by the loss of 17 u (presumably NH3) from the a2+1 ion and, to a lesser extent, by loss of 28 u (presumably CO) from the b2-16 ion. On the basis of the data presented and other experimental evidence, a structure and mechanism for the formation of the a2-16 ion is proposed.  相似文献   

12.
High energy collision-induced dissociation (CID) techniques were applied for structural elucidation of alkali-metal ion adducts of crown ethers. The CID of alkali-metal adducts of tetraglyme and hexaethylene glycol were also evaluated to contrast the fragmentation pathways of the cyclic ethers with those of acyclic analogs. A common fragmentation channel for alkali-metal ion adducts of all the ethers, which results in distonic radical cations, is the homolytic cleavage of carbon-carbon bonds. Additionally, dissociation by carbon-oxygen bond cleavages occurs, and these processes are analogous to the fragmentation pathways observed for simple protonated ethers. The proposed fragmentation pathways for alkali-metal ion adducts of crown ethers result mostly in odd-electron, acyclic product ions. Dissociation of the alkali-metal ion adducts of the acyclic ethers is dominated by losses of various neutral species after an initial hydride or proton transfer. The CID processes for all ethers are independent of the alkali-metal ion sizes; however, the extent of dissociation of the complexes to bare alkali-metal ions increases with the size of the metal.  相似文献   

13.
Sodium cluster ions Na+ n withn ranging up to 25 have been observed from a liquid sodium ion source by using a magnetic mass analyzer. Ion intensity as a function of cluster size showed distinct steps and local maxima atn=3, 5, 11, 13 and 19 (magic numbers), and a pronounced odd-even alternation. The features in the ion abundance curve are attributed to the relative stability of cluster ions. The observed magic numbers are only partially explained by the electronic shell model, indicating need to include a consideration of atomic structure in a cluster.  相似文献   

14.
The efficiency of in-trap fragmentation in a low-pressure linear ion trap (LIT), using dipolar excitation, is dependent upon the choice of both the excitation q and the drive frequency of the quadrupole. In the work presented here, fragmentation efficiencies have been measured as a function of excitation q for drive frequencies of 816 kHz and 1.228 MHz. The experiments were carried out by fragmenting reserpine (609.23-->448.20 Th and 397.21-->365.19 Th transitions) and caffeine (195-->138 Th and 138-->110 Th transitions). The data showed that the onset of efficient fragmentation occurred at a lower Mathieu q for the LIT operated at 1.228 MHz when compared with the LIT operated at 816 kHz. A comparison of the fragmentation efficiency curves as a function of pseudo-potential well depth showed that the onset of fragmentation is independent of the drive frequency. In addition, a comparison of the fragmentation efficiency curves showed that all four of the precursor ions fragmented within a range of four V of pseudo-potential well depth. The choice of an appropriate excitation q can then be determined based upon a minimum pseudo-potential well depth, quadrupole field radius, drive frequency, and the mass of interest. Fragmentation efficiencies were also found to be significantly greater when using the higher drive frequency.  相似文献   

15.
We propose a tandem mass spectrometry method that combines electron-transfer dissociation (ETD) with simultaneous collision-induced dissociation (CID), termed ETD/CID. This technique can provide more complete sequence coverage of peptide ions, especially those at lower charge states. A selected precursor ion is isolated and subjected to ETD. At the same time, a residual precursor ion is subjected to activation via CID. The specific residual precursor ion selected for activation will depend upon the charge state and m/z of the ETD precursor ion. Residual precursor ions, which include unreacted precursor ions and charge-reduced precursor ions (either by electron-transfer or proton transfer), are often abundant remainders in ETD-only reactions. Preliminary results demonstrate that during an ETD/CID experiment, b, y, c, and z-type ions can be produced in a single experiment and displayed in a single mass spectrum. While some peptides, especially doubly protonated ones, do not fragment well by ETD, ETD/CID alleviates this problem by acting in at least one of three ways: (1) the number of ETD fragment ions are enhanced by CID of residual precursor ions, (2) both ETD and CID-derived fragments are produced, or (3) predominantly CID-derived fragments are produced with little or no improvement in ETD-derived fragment ions. Two interesting scenarios are presented that display the flexibility of the ETD/CID method. For example, smaller peptides that show little response to ETD are fragmented preferentially by CID during the ETD/CID experiment. Conversely, larger peptides with higher charge states are fragmented primarily via ETD. Hence, ETD/CID appears to rely upon the fundamental reactivity of the analyte cations to provide the best fragmentation without implementing any additional logic or MS/MS experiments. In addition to the ETD/CID experiments, we describe a novel dual source interface for providing front-end ETD capabilities on a linear ion trap mass spectrometer.  相似文献   

16.
The generation and unimolecular fragmentation of V n + and Nb n + clusters formed in sputtering vanadium and niobium surfaces by Xe+ ions has been studied. The method of measuring the kinetic energy of fragment ions (kinetic energy release distribution) has been used to determine the dissociation energy. Kinetic energy spectra have been measured in the field-free zone (corresponding to a time window of 10−5–10−4 sec after emission) of an ion microanalyzer with double focusing in reverse geometry. The results of spectra measurement were treated using the Rice-Ramsperge-Kassel theory of unimolecular reactions and the “evaporative ensemble”, which allowed us to calculate the dissociation energies of homonuclear V n 1 (n= 5–11) and Nb n 1 (n = 3–8) clusters.  相似文献   

17.
We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging fromn=1?400 for Pb n + and Pb n ? , and fromn=12?5700 for Li n ? .  相似文献   

18.
A c1 ion was observed with significant yield in the tandem mass (MS/MS) spectra of peptide ions containing glutamine as the second amino acid residue from the N-terminus. The c1 fragment was generated independently of the N-terminal residue of the peptide, but its abundance was strongly dependent on the side-chain identity. This ion is not a common fragmentation product in low-energy collision-induced dissociation of peptide ions, but it assists in identification of the first two amino acid residues, often difficult due to a low or absent signal from the heaviest y ion. A consecutive fragmentation mechanism is proposed, involving a b2 ion with a six-membered ring as an intermediate, to explain the exceptional stability of the c1 fragment ion. The utility of this information is discussed, especially in de novo sequencing of peptide ions.  相似文献   

19.
Fungal cerebrosides (monohexosylceramides, or CMHs) exhibit a number of ceramide structural modifications not found in mammalian glycosphingolipids, which present additional challenges for their complete characterization. The use of Li+ cationization, in conjunction with electrospray ionization mass spectrometry and low energy collision-induced dissociation tandem mass spectrometry (ESI-MS/CID-MS), was found to be particularly effective for detailed structural analysis of complex fungal CMHs, especially minor components present in mixtures at extremely low abundance. A substantial increase in both sensitivity and fragmentation was observed on collision-induced dissociation of [M + Li]+ versus [M + Na]+ of the same CMH components analyzed under similar conditions. The effects of particular modifications on fragmentation were first systematically evaluated by analysis of a wide variety of standard CMHs expressing progressively more functionalized ceramides. These included bovine brain galactocerebrosides with non-hydroxy and 2-hydroxy fatty N-acylation; a plant glucocerebroside having (E/Z)-delta8 in addition to (E)-delta4 unsaturation of the sphingoid base; and a pair of fungal cerebrosides known to be further modified by a branching 9-methyl group on the sphingoid moiety, and to have a 2-hydroxy fatty N-acyl moiety either fully saturated or (E)-delta3 unsaturated. The method was then applied to characterization of both major and minor components in CMH fractions from a non-pathogenic mycelial fungus, Aspergillus niger; and from pathogenic strains of Candida albicans (yeast form); three Cryptococcus spp. (all yeast forms); and Paracoccidioides brasiliensis (both yeast and mycelium forms). The major components of all species examined differed primarily (and widely) in the level of 2-hydroxy fatty N-acyl delta3 unsaturation, but among the minor components a significant degree of additional structural diversity was observed, based on differences in sphingoid or N-acyl chain length, as well as on the presence or absence of the sphingoid delta8 unsaturation or 9-methyl group. Some variants were isobaric, and were not uniformly present in all species, affirming the need for MS/CID-MS analysis for full characterization of all components in a fungal CMH fraction. The diversity in ceramide distribution observed may reflect significant species-specific differences among fungi with respect to cerebroside biosynthesis and function.  相似文献   

20.
The complexes of transition-metal ions (M2+, where M = Fe, Co, Ni, Cu, Zn, Cd, and Hg) with 2-acetylbenzimidazolethiosemicarbazone (L) are studied under electrospray ionization (ESI) conditions. The ESI mass spectra of Fe and Co complexes showed the complex ions corresponding to [M+2L-2H]+, and those of Ni and Zn complexes showed [M+2L-H]+ ions, wherein the metal/ligand ratio is 1:2 and the oxidation state of the central metal ion is +3 in the case of Fe and Co and +2 in the case of Ni and Zn. The Cd and Cu complexes showed preferentially 1:1 complex ions, i.e., [M+L-H]+ or [M+L+Cl]+, whereas Hg formed both 1:1 and 1:2 complex ions. During formation of the above complex ions one or two ligands are deprotonated after keto-enol tautomerism, depending on the nature and oxidation state of central metal ion. The structures and coordination numbers of the metal ions in the complex ions were studied by their collision-induced dissociation spectra and ion-molecule reactions with acetonitrile or propylamine in the collision cell. Based on these results it is concluded that Fe, Co, Ni and Zn form stable octahedral complexes, whereas tetrahedral or square planar complexes are formed preferentially for other metals. In addition, the Cu complex showed a [2L+2Cu-3H]+ ion with a Cu-Cu bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号