首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragmentation of negative ions produced by fast-atom bombardment (FAB) from 14 tauroconjugated bile acids and some of their deuterated analogs has been studied by mass spectrometry and by collision-induced dissociation (CED) tandem mass spectrometry at low energy. Low energy collision-induced dissociation of the deprotonated molecules [M - H]? of these tauroconjugated bile acids leads to both charge-driven and charge-remote fragmentations (CRF). The former yields neutral loss from the side chain with charge migration during the fragmentation process. These fragments dominate the CID spectra, but are absent from the FAB spectra. Their relative abundances are dependent on the number and the positions of the hydroxyl groups in the steroid nucleus and thus permit distinction among some positional isomers. The CRF fragments correspond to cleavages in the side chain up to fragmentations across the steroid rings with charge retention on the sulfonate group. These CRF fragments, which also are useful for structural identification, are less intense in CID than in FAB spectra. It appears that these charge-remote fragments are favored by unsaturation in the steroid rings, either as keto groups or as endocyclic double bonds. Tandem mass spectrometry combined with the use of deuterated analogs demonstrates that the structures of the survivor pseudomolecular ions and of the CRF fragments are not rearranged.  相似文献   

2.
Electrospray ionization (ESI) tandem mass spectrometry (MS) has simplified analysis of phospholipid mixtures, and, in negative ion mode, permits structural identification of picomole amounts of phospholipid species. Collisionally activated dissociation (CAD) of phospholipid anions yields negative ion tandem mass spectra that contain fragment ions representing the fatty acid substituents as carboxylate anions. Glycerophosphocholine (GPC) lipids contain a quaternary nitrogen moiety and more readily form cationic adducts than anionic species, and positive ion tandem mass spectra of protonated GPC species contain no abundant ions that identify fatty acid substituents. We report here that lithiated adducts of GPC species are readily formed by adding lithium hydroxide to the solution in which phospholipid mixtures are infused into the ESI source. CAD of [MLi+] ions of GPC species yields tandem mass spectra that contain prominent ions representing losses of the fatty acid substituents. These ions and their relative abundances can be used to assign the identities and positions of the fatty acid substituents of GPC species. Tandem mass spectrometric scans monitoring neutral losses of the head-group or of fatty acid substituents from lithiated adducts can be used to identify GPC species in tissue phospholipid mixtures. Similar scans monitoring parents of specific product ions can also be used to identify the fatty acid substituents of GPC species, and this facilitates identification of distinct isobaric contributors to ions observed in the ESI/MS total ion current.  相似文献   

3.
Results of mass spectrometric studies are reported for the collisional dissociation of Group XI (Cu, Ag, Au) metal ion complexes with fatty acids (palmitic, oleic, linoleic and α-linolenic) and glycerolipids. Remarkably, the formation of M2H+ ions (M = Cu, Ag) is observed as a dissociation product of the ion complexes containing more than one metal cation and only if the lipid in the complex contains a double bond. Ag2H+ is formed as the main dissociation channel for all three of the fatty acids containing double bonds that were investigated while Cu2H+ is formed with one of the fatty acids and, although abundant, is not the dominant dissociation channel. Also, Cu(I) and Ag(I) ion complexes were observed with glycerolipids (including triacylglycerols and glycerophospholipids) containing either saturated or unsaturated fatty acid substituents. Interestingly, Ag2H+ ion is formed in a major fragmentation channel with the lipids that are able to form the complex with two metal cations (triacylglycerols and glycerophosphoglycerols), while lipids containing a fixed positive charge (glycerophospocholines) complex only with a single metal cation. The formation of Ag2H+ ion is a significant dissociation channel from the complex ion [Ag2(L–H)]+ where L = Glycerophospholipid (GP) (18:1/18:1). Cu(I) also forms complexes of two metal cations with glycerophospholipids but these do not produce Cu2H+ upon dissociation. Rather organic fragments, not containing Cu(I), are formed, perhaps due to different interactions of these metal cations with lipids resulting from the much smaller ionic radius of Cu(I) compared to Ag(I).  相似文献   

4.
An analytical strategy using fast atom bombardment (FAB) ionization and tandem mass spectrometry has been developed to determine the molecular weight and major fragment ions, and to provide limited structural characterization of low picomole levels of carcinogen-nucleoside adducts. This strategy consists of three main components: (1) the sensitivity for analysis by FAB combined with mass spectrometry is increased via chemical derivatization; (2) the nucleoside adducts are selectively detected by using constant neutral loss scans; and (3) structurally characteristic fragments are obtained by using daughter ion scans. Trimethylsilyl derivatized arylamine-nucleoside adducts have been detected at levels as low as a few picomoles by using this approach. After experimental determination of the mass of the BH 2 + fragment ion, daughter ion spectra have been used to probe the structure specificity associated with collision-activated decomposition of this fragment. With model C-8 substituted arylamine adducts [N-(deoxyguanosin-8-yl)-4-aminobiphenyl, N-(deoxyadenosin--yl)-4-aminobiphenyl, and N-(deoxyguanosin-8-yl)-2-aminofluorene], nucleoside-specific and carcinogen-specific fragmentation have been observed in daughter ion spectra.  相似文献   

5.
The tandem mass (MS/MS) spectra of ammonium ion, metal ion and ligated metal ion adducts of chain-extended acyclic nitro-containing deoxyglucose and deoxygalactose derivatives have been studied. The ammonium adducts fragment primarily by elimination of ammonia followed by acetic acid, thus not giving much structural information. In contrast, cationization of these compounds by metal ions and ligated metal ions gave structurally informative and useful fragment ions on MS/MS. The metal ions and ligated metal ions play an important role in controlling and directing fragmentation. Retro-aldol fragmentation is facilitated by metal ions such as Li(+), Na(+), Ag(+) and Cu(+), whereas the adducts with higher alkali metal ions such as Rb(+) and Cs(+) fragment to give only the corresponding metal ions. The divalent metal ions such as Cu(2+) and Ba(2+) also induce retro-aldol fragmentation. However, the charge is carried by the aldehyde fragment in the case of Cu(2+) adducts, whereas the nitroalkane fragment carries the charge in the case of Ba(2+) adducts. Ligated metal ions such as ZnCl(+), CuCl(+), InCl(2) (+) and BaCl(+) also behave similarly and induce retro-aldol fragmentation in these acyclic sugars. Both the metal ion and ligated metal ion adducts can fragment by elimination of metal-containing neutral molecules.  相似文献   

6.
A number of clinically significant penem β-lactams, both free acids and sodium salts, were investigated by mass-analyzed ion kinetic energy spectrometry (MIKES) following fast atom bombardment (FAB) ionization. The collisionally activated dissociation (CAD) products of [M + H] + and [M + Na]+ ions are described. Carbon dioxide loss was observed for some of the free acids, whereas a daughter ion generated by β-lactam ring cleavage was characteristic of the sodiated species. Other fragments included successive cleavages and rearrangements of the substituent side-chain, permitting complete characterization of these chains. The fragmentation pattern for both protonated and sodiated species were more clearly established by CAD MIKES than by normal FAB mass spectral analyses. A notable feature of this technique was its ability to differentiate between pairs of regioisomeric penems on the basis of their fragmentation patterns. These compounds could not be differentiated in the usual mass spectra.  相似文献   

7.
Charge inversion mass spectrometry is an MS/MS method in which the electric charge of the precursor ions is opposite to that of the secondary product ions. Charge inversion mass spectrometry is classified into four types depending on the electric charge and time scale of collisions. Charge inversion mass spectrometry using collisions with gaseous targets in the keV energy collision range has provided insights into the structures and reactions of ions and neutral molecules. The characteristics of charge inversion experiments are presented in terms of the reaction endothermicities and the cross sections and their dependence on the target species. In the case of rare-gas or simple molecular targets, double-electron transfer in one collision is effective to form positive ions from negative ions, while, in the case of alkali metal targets, successive single-electron transfers in two collisions is effective to form negative ions from positive ions. On the basis of the observed target-density dependence of the product ion intensity and thermochemical considerations for internal energy distribution using thermometer molecules, the charge inversion processes using alkali metal targets have been confirmed to occur by electron transfers in successive collisions and the dissociation processes are found to occur in energy-selected neutral species formed from near-resonant neutralization with alkali metal targets. While collisionally activated dissociation (CAD) is due to dissociation of activated ions with broad internal energy distributions, the charge inversion process using alkali metal targets is due to dissociation of energy-selected neutral species with narrow internal energy distributions. The charge inversion/alkali metal spectra provide clear differentiation of the isomeric cations of C(2)H(2), C(3)H(4) and dichlorobenzenes. The CAD spectra of these isomeric cations are similar.  相似文献   

8.
Metastable ion and collisionally-activated dissociation spectra of several cluster ions of the type [Csn+1In]+, formed by fast atom bombardment mass spectrometry (FABMS) of CsI, have been studied: It is found that particular cluster ions are more stable than others. Less stable ions undergo more unimolecular dissociation and have larger cross-sections for collisional dissociation than do the more stable ions, and this leads to unexpected anomalies in the FAB mass spectrum of CsI. The collision spectrum of [Cs35I34]+ (m/z 8966) has been acquired at an accelerating potential of 10 kV; the extent of both unimolecular and collisionally-activated dissociation of this ion is remarkably high and leads to collision/ transmission efficiencies of 85% for our tandem mass spectrometer. Clusters formed by FAB of an equimolar mixture of CsI and KI have also been studied by their collisionally-activated dissociation (CAD) and metastable ion (MI) spectra.  相似文献   

9.
Mass spectra of trialkylsilyl derivatives of fatty acids, dicarboxylic acids, hydroxyacids, oxoacids, sugars, amino acids and alcohols were obtained. Amino acids were analyzed as tert-butyldimethylsilyl derivatives; all other model compounds were analyzed as trimethylsilyl derivatives. Reproducibility of the electron ionization (EI) mass spectra for the derivatives obtained was discussed. It was shown that, for many investigated derivatives, composition of the respective mass spectra depended greatly on ion source contamination. The trimethylsilylated alpha-tocopherol mass spectrum composition was most significantly influenced by ion source contamination. This compound can be used to test ion source contamination.  相似文献   

10.
We applied electrospray ionization (ESI) tandem quadrupole mass spectrometry to establish the fragmentation pathways of ceramides under low energy collisional-activated dissociation (CAD) by studying more than thirty compounds in nine subclasses. The product-ion spectra of the [M + Li]+ ions of ceramides contain abundant fragment ions that identify the fatty acyl substituent and the long-chain base (LCB) of the molecules, and thus, the structure of ceramides can be easily determined. Fragment ions specific to each ceramide subclasses are also observed. These feature ions permit differentiation among different ceramide subclasses. The ion series arising from the classical C-C bond cleavages that were reported in the fast-atom bombardment (FAB)-high energy tandem mass spectrometry is not observable; however, the product-ion spectra contain multiple fragment ions informative for structural characterization and isomer identification. We also investigated the tandem mass spectra of the fragment ions generated by in-source CAD (pseudo-MS3) and of the deuterium-labeling molecular species obtained by H/D exchange to support the ion structure assignments and the proposed fragmentation pathways that lead to the ion formation.  相似文献   

11.
Negative ion chemical ionization linked to collisionally activated decomposition (CAD) experiments has proved to be an efficient analytical tool in mass spectrometric characterization of fatty acids. The CAD mass-analysed ion kinetic energy spectra of [M ? H]? species, obtained by OH? reaction with a selection of six C18 fatty acid methyl esters, reveal useful correlations with the original structure of the neutrals, giving evidence of both chain branching and double bond positions.  相似文献   

12.
Saturated and mono-unsaturated fatty acid methyl esters as well as corresponding underivatized acids gave abundant carboxylate anions [RCOO]? under negative ion chemical ionization (OH? and NH2 ?) and electron attachment conditions. B/E or mass-analysed ion kinetic energy spectra of fragments arising from high energy collision activated dissociation (CAD) of these [RCOO]? species contained decisive information on the original structure of the neutrals. From an analytical point of view, the method can utilize the gas chromatographic mass spectrometric combination and, in the B/E mode, can be used in practice on any double-focusing mass spectrometer.  相似文献   

13.
The mechanism of dissociation of neutral methyl stearate and its hydrogen atom adduct was investigated by charge inversion mass spectrometry using an alkali metal target. Migrations of functional groups in fatty acid ester ions are often observed during the dissociation of the cations in collisionally activated dissociation (CAD). In the charge inversion spectrum, the main dissociation channels of methyl stearate molecule are the loss of a CH3 radical or a H atom. To identify the source of the CH3 radical and the H atom, the charge inversion spectra of partially deuterated methyl stearate (C17H35COOCD3) were measured. The loss of CH3 occurred through elimination from the methoxy methyl group and that of H occurred through elimination from the hydrocarbon chain of the fatty acid group. In the protonated ester, a simultaneous loss of CH3 (from the methoxy methyl group) and a H atom or a H2 molecule was observed. The charge inversion process gave the dissociation fragments with almost no migration of atoms. Only a few peaks that were structure sensitive were observed in the higher mass region in the charge inversion spectra; these peaks were associated with dissociations of energy-selected neutral species, unlike the case of CAD spectra in which they result from dissociation of ions. Charge inversion mass spectrometry with alkali metal targets provided direct information on the dissociation mechanism of methyl stearate and its hydrogen atom adduct without any migration of functional groups.  相似文献   

14.
Structural characterization of glycosphingolipids as their lithiated adducts using low-energy collisional-activated dissociation (CAD) tandem mass spectrometry with electrospray ionization (ESI) is described. The tandem mass spectra contain abundant fragment ions reflecting the long chain base (LCB), fatty acid, and the sugar constituent of the molecule and permit unequivocal identification of cerebrosides, di-, trihexosyl ceramides and globosides. The major fragmentation pathways arise from loss of the sugar moiety to yield a lithiated ceramide ion, which undergoes further fragmentation to form multiple fragment ions that confirm the structures of the fatty acid and LCB. The mechanisms for the ion formation and the possible configuration of the fragment ions, resulting from CAD of the lithiated molecular ions ([M + Li]+) of monoglycosylceramides are proposed. The mechanisms were supported by CAD and source CAD tandem mass spectra of various cerebrosides and of their analogous molecules prepared by H-D exchange. Constant neutral loss and precursor ion scannings to identify galactosylceramides with sphingosine or sphinganine LCB subclasses, and with specific N-2-hydroxyl fatty acid subclass in mixtures are also demonstrated.  相似文献   

15.
本文研究游离胆汁酸及其丁二酸衍生物的快速原子轰击(FAB)质谱.用甘油或硫甘醇作样品的基质,具有不同的灵敏度增强效应。FAB负离子质谱,获得[M-n]-典型离子簇,[M-1]-作为最强离子是每一个样品的基峰.  相似文献   

16.
The gas-phase ion–molecular reactions of [ketene] with a number of isomeric alkenes, alkynes and dienes were studied by using tandem mass spectrometry. Ketene was reacted with C4H8 (but-1- and ?2-ene and 2-methylpropene) and C5H8 unsaturated hydrocarbons (isoprene, penta-1,3- and ?1,4-diene, pent-1- and ?2-yne, cyclopentene and methylenecyclobutane) in a high-pressure chemical ionization source of a tandem mass spectrometer. The collisionally stabilized ion–molecule adducts were analyzed by use of collisionally activated dissociation (CAD) spectra. The three C4H8 alkenes were distinguishable on the basis of the distinct CAD spectra of their adducts with ketene. Similarly, the CAD data for the corresponding adducts derived from the C5H8 hydrocarbons point to different structures for the C5H8 compounds.  相似文献   

17.
Positive- and negative-ion fast-atom bombardment (FAB) mass spectrometry and linked-field scan techniques at constant B/E are used to characterize phosphorylated serine, threonine, and tyrosine amino acids. Abundant molecular ions are formed for all three amino acids in both modes of ionization. The dominant fragmentation is cleavage of the phosphate ester bond with charge retention in positive-ion FAB by the amino acid backbone and in the negative-ion mode by the phosphate group. The unique feature of positive-ion FAB mass spectra of phosphoserine and -threonine is the loss, from the ion [M + H]+, of a molecule of phosphoric acid (98 Da), whereas the corresponding tyrosine expels a HPO4 (96 Da) moiety to yield a stable phenylalanine ion.  相似文献   

18.
Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal–protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca2+, is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion–protein interaction occurs in solution.   相似文献   

19.
Analysis of 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (anandamide) via alkali or alkaline earth metal-adduct high-energy collision-induced dissociation (CID) in fast-atom bombardment (FAB) ionization-mass spectrometry (MS) is described. The CID-MS/MS of the [2-AG+Li](+) or [2-AG+Na](+) ion undergoes charge-remote fragmentation (CRF), which is useful for the determination of the double-bond positions in the hydrocarbon chain, while the CID-MS/MS of the [2-AG-H+Cat](+) (Cat = Mg(2+), Ca(2+), Ba(2+)) ion provides an abundant fragment ion of the cationized arachidonic acid species, which is derived from cleaving the ester bond via a McLafferty-type rearrangement in addition to structurally informative CRF ions in small amounts. On the other hand, the CID-MS/MS spectra of anandamide cationized with both alkali metal (Li(+) or Na(+)) and alkaline earth metal (Mg(2+), Ca(2+), or Ba(2+)) show CRF patterns: the spectra obtained in lithium or sodium adduct are more clearly visible than those in magnesium, calcium, or barium adduct. The McLafferty rearrangement is not observed with metal-adduct anandamide. The characteristics in each mass spectrum are useful for the detection of these endogenous ligands. m-Nitrobenzyl alcohol (m-NBA) is the most suitable matrix. A lithium-adduct [2-AG+Li](+) or [anandamide+Li](+) ion is observed to be the most abundant in each mass spectrum, since the affinity of lithium for m-NBA is lower than that for other matrices examined.  相似文献   

20.
Picolinyl ester derivatives of common fatty acids can be readily desorbed by fast atom bombardment (FAB) as positive ions and then collisionally activated. Collisionally activated spectra of the (M + H)+ ions of the derivatives reveal that structurally informative remote-charge-site fragmentations occur. The presence of substitutents such as double bond, branch points, cyclopropane rings, hydroxy groups, and epoxy rings interrupts the fragmentation process in such a way that the substituent can be identified and its location on the alkyl chain can be determined. This method is also applicable to the picolinyl esters of short-chain fatty acids and to the analysis of mixtures of fatty acid derivatives. The approach is advantageous becasue the epicolinyl ester derivatives are also amenable to gas chromatography/mass spectrometry (GC/MS). Therefore, the FAB-MS/MS approach developed here is complementary to GC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号